Polar Biology

, Volume 31, Issue 1, pp 101–111 | Cite as

Whole season net community production in the Weddell Sea

  • Mario Hoppema
  • Rob Middag
  • Hein J. W. de Baar
  • Eberhard Fahrbach
  • Evaline M. van Weerlee
  • Helmuth Thomas
Original Paper


Depletions of total CO2, nitrate, phosphate and silicate in the surface layer were calculated for cruise ANT XXII/3 with FS Polarstern in March 2005 for estimating the annual net community production. East-west across the Weddell Sea the variation of all depletions is similar, but this holds to a lesser extent for silicate. Depletions in March 2005 are 2–3 times larger than those in January 1993 for the same transect. Very low N:P and C:P depletion ratios seem to point to dominance of diatoms, in the central Weddell Sea more than in the margin. Estimates of annual net community productions are about 1.8 and 3.5 mol C m−2 year−1 for the interior Weddell Sea and a near-margin region, respectively. The region does not comply with the classical view of a marginal ice zone with high productivity. Net community production is similar to annual export production, implying that remineralization in the ensuing winter be minor.


Phytoplankton Southern Ocean Vegetative Season Conductivity Temperature Depth Depletion Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank captain and crew of FS Polarstern for their great support. This research was supported by the European Commission’s Sixth Framework Programme for Research and Technological Development, Integrated Project “CARBOOCEAN” (contract no.: 511176-2).


  1. Anderson LG, Holby O, Lindegren R, Ohlson M (1991) The transport of anthropogenic carbon dioxide into the Weddell Sea. J Geophys Res 96:16679–16687Google Scholar
  2. Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, Van Woert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367PubMedCrossRefGoogle Scholar
  3. Arrigo KR, Worthen D, Schnell A, Lizotte MP (1998) Primary production in Southern Ocean waters. J Geophys Res 103:15587–15600CrossRefGoogle Scholar
  4. Banse K (1994) Uptake of inorganic carbon and nitrate by marine plankton and the Redfield ratio. Global Biogeochem Cycles 8:81–84CrossRefGoogle Scholar
  5. Bates NR, Hansell DA, Carlson GA, Gordon LI (1998) Distribution of CO2 species, estimates of net community production, and air-sea CO2 exchange in the Ross Sea polynya. J Geophys Res 103:2883–2896CrossRefGoogle Scholar
  6. Bathmann UV, Scharek R, Klaas C, Dubischar CD, Smetacek V (1997) Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector of the Southern Ocean. Deep-Sea Res II 44:51–67CrossRefGoogle Scholar
  7. Beucher C, Tréguer P, Hapette A-M, Corvoisier R, Metzl N, Pichon J-J (2004) Intense summer Si-recycling in the surface Southern Ocean. Geophys Res Lett 31:L09305, doi:10.1029/2003GL018998CrossRefGoogle Scholar
  8. Carillo CJ, Karl DM (1999) Dissolved inorganic carbon pool dynamics in the northern Gerlache Strait, Antarctica. J Geophys Res 104:15873–15884CrossRefGoogle Scholar
  9. Cota GF, Smith WO Jr, Nelson DM, Muench RD, Gordon LI (1992) Nutrient and biogenic particulate distributions, primary productivity and nitrogen uptake in the Weddell-Scotia Sea marginal ice zone during winter. J Mar Res 50:155–181CrossRefGoogle Scholar
  10. De Baar HJW, Buma AGJ, Nolting RF, Cadée GC, Jacques G, Tréguer PJ (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol Progr Ser 65:105–122CrossRefGoogle Scholar
  11. De Baar HJW, Van Leeuwe MA, Scharek R, Goeyens L, Bakker KMJ, Fritsche P (1997) Nutrient anomalies in Fragilariopsis kerguelensis blooms, iron deficiency and the nitrate/phosphate ratio (A.C. Redfield) of the Antarctic Ocean. Deep-Sea Res II 44:229–260CrossRefGoogle Scholar
  12. DOE (1994) In: Dickson AG, Goyet C (eds), Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water, version 2, ORNL/CDIAC-74Google Scholar
  13. Fahrbach E (2006) The expedition ANTARKTIS-XXII/3 of the research vessel “Polarstern” in 2005. Berichte zur Polar- und Meeresforschung (Alfred-Wegener-Institut, Bremerhaven) 533:1–246Google Scholar
  14. Fahrbach E, Rohardt G, Schröder M, Strass V (1994) Transport and structure of the Weddell Gyre. Ann Geophys 12:840–855CrossRefGoogle Scholar
  15. Fischer G, Fütterer D, Gersonde R, Honjo S, Osterman D, Wefer G (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428CrossRefGoogle Scholar
  16. Gibson JAE, Trull TW (1999) Annual cycle of ƒCO2 under sea-ice and in open water in Prydz Bay, East Antarctica. Mar Chem 66:187–200CrossRefGoogle Scholar
  17. Gleitz M, Thomas DN (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea-ice formation in the southeastern Weddell Sea, Antarctica. J Exp Mar Biol Ecol 173:211–230CrossRefGoogle Scholar
  18. Gordon AL, Huber BA (1990) Southern Ocean winter mixed layer. J Geophys Res 95:11655–11672Google Scholar
  19. Hoppema M, Goeyens L (1999) Redfield behavior of carbon, nitrogen and phosphorus depletions in Antarctic surface water. Limnol Oceanogr 44:220–224CrossRefGoogle Scholar
  20. Hoppema M, De Baar HJW, Bellerby RGJ, Fahrbach E, Bakker K (2002) Annual export production in the interior Weddell Gyre estimated from a chemical mass balance of nutrients. Deep-Sea Res II 49:1675–1689CrossRefGoogle Scholar
  21. Hoppema M, Fahrbach E, Stoll MHC, De Baar HJW (1999) Annual uptake of atmospheric CO2 by the Weddell Sea derived from a surface layer balance, including estimations of entrainment and new production. J Mar Syst 19:219–233CrossRefGoogle Scholar
  22. Hoppema M, Goeyens L, Fahrbach E (2000) Intense nutrient removal in the remote area off Larsen Ice Shelf (Weddell Sea). Polar Biol 23:85–94CrossRefGoogle Scholar
  23. Ishii M, Inoue HY, Matsueda H, Tanoue E (1998) Close coupling between seasonal biological production and dynamics of dissolved inorganic carbon in the Indian Ocean sector and the western Pacific Ocean sector of the Antarctic Ocean. Deep-Sea Res I 45:1187–1209CrossRefGoogle Scholar
  24. Jennings JC Jr, Gordon LI, Nelson DM (1984) Nutrient depletion indicates high primary productivity in the Weddell Sea. Nature 309:51–54CrossRefGoogle Scholar
  25. Jones EP, Coote AR, Levy EM (1983) Effect of sea ice meltwater on the alkalinity of seawater. J Mar Res 41:43–52CrossRefGoogle Scholar
  26. Karl DM, Tilbrook BD, Tien G (1991) Seasonal coupling of organic matter production and particle flux in the western Bransfield Strait, Antarctica. Deep-Sea Res 38:1097–1126CrossRefGoogle Scholar
  27. Korb RE, Whitehouse M (2004) Contrasting primary production regimes around South Georgia, Southern Ocean: large blooms versus high nutrient, low chlorophyll waters. Deep-Sea Res II 51:721–738CrossRefGoogle Scholar
  28. Krell A, Schnack-Schiel SB, Thomas DN, Kattner G, Zipan W, Dieckmann GS (2005) Phytoplankton dynamics in relation to hydrography, nutrients and zooplankton at the onset of sea ice formation in the eastern Weddell Sea (Antarctica). Polar Biol 28:700–713CrossRefGoogle Scholar
  29. Le Corre P, Minas HJ (1983) Distributions et évolution des éléments nutritifs dans le secteur indien de l’Océan Antarctique en fin de période estivale. Oceanol Acta 6:365–381Google Scholar
  30. Leynaert A, Nelson DM, Quéguiner B, Tréguer P (1993) The silica cycle in the Antarctic Ocean: Is the Weddell Sea atypical? Mar Ecol Progr Ser 96:1–15CrossRefGoogle Scholar
  31. Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345:156–158CrossRefGoogle Scholar
  32. Mathot S, Dandois J-M, Lancelot C (1992) Gross and net primary production in the Scotia-Weddell Sea sector of the Southern Ocean during spring 1988. Polar Biol 12:321–332CrossRefGoogle Scholar
  33. Middag R (2005) Carbon and nutrients in the Weddell Sea—estimations based on the Redfield ratio concept. MS Thesis, University of Groningen, The Netherlands, 25 ppGoogle Scholar
  34. Poisson A, Chen C-TA (1987) Why is there little anthropogenic CO2 in the Antarctic Bottom Water? Deep-Sea Res 34:1255–1275CrossRefGoogle Scholar
  35. Robinson C, Williams PJleB (1992) Development and assessment of an analytical system for the accurate and continual measurement of total dissolved inorganic carbon. Mar Chem 34:157–175CrossRefGoogle Scholar
  36. Rubin SI, Takahashi T, Chipman DW, Goddard JG (1998) Primary productivity and nutrient utilization ratios in the Pacific sector of the Southern Ocean based on seasonal changes in seawater chemistry. Deep-Sea Res I 45:1211–1234CrossRefGoogle Scholar
  37. Savidge G, Priddle J, Gilpin LC, Bathmann U, Murphy EJ, Owens NJP, Pollard RT, Turner DR, Veth C, Boyd P (1996) An assessment of the role of the marginal ice zone in the carbon cycle of the Southern Ocean. Antarctic Sci 8:349–358Google Scholar
  38. Scharek R, Smetacek V, Fahrbach E, Gordon LI, Rohardt G, Moore S (1994) The transition from winter to early spring in the eastern Weddell Sea, Antarctica: Plankton biomass and composition in relation to hydrography and nutrients. Deep-Sea Res I 41:1231–1250CrossRefGoogle Scholar
  39. Sedwick PN, DiTullio GR, Mackey DJ (2000) Iron and manganese in the Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters. J Geophys Res 105:11321–11336CrossRefGoogle Scholar
  40. Serebrennikova YM, Fanning KA (2004) Nutrients in the Southern Ocean GLOBEC region: variations, water circulation, and cycling. Deep-Sea Res II 51:1981–2002CrossRefGoogle Scholar
  41. Shim J, Kang YC, Kim D, Choi S-H (2006) Distribution of net community production and surface pCO2 in the Scotia Sea, Antarctica, during austral spring 2001. Mar Chem 101:68–84CrossRefGoogle Scholar
  42. Smith WO Jr, Nelson DM (1985) Phytoplankton bloom produced by a receding ice edge in the Ross Sea: Spatial coherence with the density field. Science 227:163–166PubMedCrossRefGoogle Scholar
  43. Smith WO Jr, Nelson DM (1990) Phytoplankton growth and new production in the Weddell Sea marginal ice zone in the austral spring and autumn. Limnol Oceanogr 35:809–821CrossRefGoogle Scholar
  44. Smith WO Jr, Shields AR, Peloquin JA, Catalano G, Tozzi S, Dinniman MS, Asper VA (2006) Interannual variations in nutrients, net community production, and biogeochemical cycles in the Ross Sea. Deep-Sea Res II 53:815–833CrossRefGoogle Scholar
  45. Spiridonov VA, Nöthig E-M, Schröder M, Wisotzki A (1996) The onset of biological winter in the eastern Weddell Gyre (Antarctica) planktonic community. J Mar Syst 9:211–230CrossRefGoogle Scholar
  46. Steeman Nielsen E (1951) Measurement of the production of organic matter in the sea by means of carbon-14. Nature 167:684–685CrossRefGoogle Scholar
  47. Sweeney C, Hansell DA, Carlson CA, Codispoti LA, Gordon LI, Marra J, Millero FJ, Smith WO, Takahashi T (2000) Biogeochemical regimes, net community production and carbon export in the Ross Sea, Antarctica. Deep-Sea Res II 47:3369–3394CrossRefGoogle Scholar
  48. Takeda S (1998) Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393:774–777CrossRefGoogle Scholar
  49. Thomas H, Schneider B (1999) The seasonal cycle of carbon dioxide in Baltic Sea surface waters. J Mar Syst 22:53–67CrossRefGoogle Scholar
  50. Van Bennekom AJ, Berger GW, Van der Gaast SJ, De Vries RTP (1988) Primary productivity and the silica cycle in the Southern Ocean (Atlantic sector). Palaeogeogr Palaeoclimatol Palaeoecol 67:19–30CrossRefGoogle Scholar
  51. Weiss RF, Östlund HG, Craig H (1979) Geochemical studies of the Weddell Sea. Deep-Sea Res 26A:1093–1120CrossRefGoogle Scholar
  52. Westerlund S, Öhman P (1991) Iron in the water column of the Weddell Sea. Mar Chem 35:199–217CrossRefGoogle Scholar
  53. Williams PJleB (1993) On the definition of plankton production terms. In: ICES marine science symposium 197:9–19Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Mario Hoppema
    • 1
  • Rob Middag
    • 2
    • 3
  • Hein J. W. de Baar
    • 2
    • 3
  • Eberhard Fahrbach
    • 1
  • Evaline M. van Weerlee
    • 2
  • Helmuth Thomas
    • 2
    • 4
  1. 1.Alfred Wegener Institute for Polar and Marine Research, Climate SciencesBremerhavenGermany
  2. 2.Royal Netherlands Institute for Sea ResearchTexelThe Netherlands
  3. 3.Department of Marine BiologyUniversity of GroningenHarenThe Netherlands
  4. 4.Department of OceanographyDalhousie UniversityHalifaxCanada

Personalised recommendations