Polar Biology

, Volume 31, Issue 1, pp 1–13

Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment

  • Tom Moens
  • Sandra Vanhove
  • Ilse De Mesel
  • Bea Kelemen
  • Thierry Janssens
  • Ann Dewicke
  • Ann Vanreusel
Original Paper

Abstract

δ13C of nematode communities in 27 sites was analyzed, spanning a large depth range (from 130 to 2,021 m) in five Antarctic regions, and compared to isotopic signatures of sediment organic matter. Sediment organic matter δ13C ranged from −24.4 to −21.9‰ without significant differences between regions, substrate types or depths. Nematode δ13C showed a larger range, from −34.6 to −19.3‰, and was more depleted than sediment organic matter typically by 1‰ and by up to 3‰ in silty substrata. These, and the isotopically heavy meiofauna at some stations, suggest substantial selectivity of some meiofauna for specific components of the sedimenting plankton. However, 13C-depletion in lipids and a potential contribution of chemoautotrophic carbon in the diet of the abundant genus Sabatieria may confound this interpretation. Carbon sources for Antarctic nematodes were also explored by means of an experiment in which the fate of a fresh pulse of labile carbon to the benthos was followed. This organic carbon was remineralized at a rate (11–20 mg C m−2 day−1) comparable to mineralization rates in continental slope sediments. There was no lag between sedimentation and mineralization; uptake by nematodes, however, did show such a lag. Nematodes contributed negligibly to benthic carbon mineralization.

Keywords

Antarctic Nematodes Meiobenthos Carbon sources Stable carbon isotopes Pulse-chase experiment Mineralization 

References

  1. Abelmann A, Gersonde R (1991) Biosiliceous flux in the Southern Ocean. Mar Chem 35:503–536CrossRefGoogle Scholar
  2. Andrassy I (1956) Die Rauminhalts- und Gewichtsbestimmung der Fadenwürmer (Nematoden). Acta Zool Acad Scient Hung 2:1–15Google Scholar
  3. Arntz W, Brey T (2001) The expedition ANTARKTIS XVII/3 (EASIZ III) of RV “Polarstern” in 2000. Reports on Polar and Marine Research 402Google Scholar
  4. Arntz W, Gutt J (1999) The expedition ANTARKTIS XV/3 (EASIZ II) of RV “Polarstern” in 1998. Reports on Polar and Marine Research 301Google Scholar
  5. Bathmann UV, Fischer G, Müller PJ, Gerdes G (1991) Short term variation in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol 11:185–195CrossRefGoogle Scholar
  6. Beaulieu SE (2002) Accumulation and fate of phytodetritus on the sea floor. Oceanogr Mar Biol Annu Rev 40:171–232Google Scholar
  7. Bett BJ, Vanreusel A, Vincx M, Soltwedel T, Pfannkuche O, Lambshead PJD, Gooday AJ, Ferrero T, Dinet A (1994) Sampler bias in the quantitative study of deep-sea meiobenthos. Mar Ecol Prog Ser 104:197–203CrossRefGoogle Scholar
  8. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth, 144 ppGoogle Scholar
  9. Conover WJ (1971) Practical non-parametric statistics. Wiley, New YorkGoogle Scholar
  10. Corbisier TN, Petti MAV, Skowronski RSP, Brito TAS (2004) Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol 27:75–82CrossRefGoogle Scholar
  11. Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24:327–343CrossRefGoogle Scholar
  12. Dando PR, Fenchel T, Jensen P, Ohara SCM, Niven SJ, Schuster U (1993) Ecology of gassy, organic-rich sediment in a shallow subtidal area on the Kattegat coast of Denmark. Mar Ecol Prog Ser 100:265–271CrossRefGoogle Scholar
  13. Danovaro R, Dell’Anno A, Martorano D, Parodi P, Marrale ND, Fabiano M (1999) Seasonal variation in the biochemical composition of deep-sea nematodes: bioenergetic and methodological considerations. Mar Ecol Prog Ser 179:273–283CrossRefGoogle Scholar
  14. Dehairs F, Kopczynska E, Nielsen P, Lancelot C, Bakker DCE, Koeve W, Goeyens L (1997) δ13C of Southern Ocean suspended organic matter during spring and early summer: regional and temporal variability. Deep Sea Res II 44:129–142CrossRefGoogle Scholar
  15. De Mesel I, Lee HJ, Vanhove S, Vincx M, Vanreusel A (2006) Species diversity and distribution within the deep-sea nematode genus Acantholaimus on the continental shelf and slope in Antarctica. Polar Biol 29:860–871CrossRefGoogle Scholar
  16. Fischer GR, Fütterer D, Gersonde R, Honjo S, Ostermann D, Wefer G (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428CrossRefGoogle Scholar
  17. Fontugne M, Descolas-Gros C, de Billy G (1991) The dynamics of CO2 fixation in the Southern Ocean as indicated by carboxylase activities and organic carbon ratios. Mar Chem 35:371–380Google Scholar
  18. Goering J, Alexander V, Haubenstock N (1990) Seasonal variability of stable carbon and nitrogen isotope ratios of organisms in a north Pacific bay. Est Coast Shelf Sci 30:239–260CrossRefGoogle Scholar
  19. Gooday AJ (1988) A response by benthic foraminifera to the deposition of phytodetritus in the deep-sea. Nature 332:70–73CrossRefGoogle Scholar
  20. Gooday AJ, Pfannkuche O, Lambshead PJD (1996) An apparent lack of response by metazoan meiofauna to phytodetritus deposition in the bathyal north-eastern Atlantic. J Mar Biol Assoc UK 76:297–310CrossRefGoogle Scholar
  21. Gooday AJ, Turley CM, Allen JA (1990) Responses by benthic organisms to inputs of organic material to the ocean floor—a review. Philos Trans R Soc Lond A 331:119–138CrossRefGoogle Scholar
  22. Graf G (1992) Benthic–pelagic coupling: a benthic view. Oceanogr Mar Biol Annu Rev 30:239–260Google Scholar
  23. Gutt J, Starmans A, Dieckmann G (1998) Phytodetritus deposited on the Antarctic shelf and upper slope: its relevance for the benthic system. J Mar Syst 17:435–444CrossRefGoogle Scholar
  24. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Annu Rev 23:399–489Google Scholar
  25. Hendelberg M, Jensen P (1993) Vertical distribution of the nematode fauna in a coastal sediment influenced by seasonal hypoxia in the bottom water. Ophelia 37:83–94Google Scholar
  26. Iken K, Brey T, Wand U, Voigt J, Junghans P (2001) Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr 50:383–405CrossRefGoogle Scholar
  27. Ingels J, Vanhove S, De Mesel I, Vanreusel A (2006) The biodiversity and biogeography of the free-living nematode genera Desmodora and Desmodorella (family Desmodoridae) at both sides of the Scotia Arc. Polar Biol 29:936–949CrossRefGoogle Scholar
  28. Jensen P (1981) Species, distribution and a microhabitat theory for marine mud dwelling Comesomatidae (Nematoda) in European waters. Cah Biol Mar 22:231–241Google Scholar
  29. Kaehler S, Pakhhomov EA, MacQuaid CD (2000) Trophic structure of the marine food web at the Prince Edward Islands (Southern Ocean) determined by δ13C and δ15N analysis. Mar Ecol Prog Ser 208:13–20CrossRefGoogle Scholar
  30. Kopczynska E, Goeyens L, Semeneh M, Dehairs F (1995) Phytoplankton composition and cell carbon distribution in Prydz Bay, Antarctica: relation to organic particulate matter and its δ13C values. J Plankton Res 17:685–707CrossRefGoogle Scholar
  31. Kuipers BR, de Wilde PAWJ, Creutzberg F (1981) Energy flow in a tidal flat ecosystem. Mar Ecol Prog Ser 5:215–221CrossRefGoogle Scholar
  32. Leventer A (1991) Sediment trap diatom assemblages from the northern Antarctic Peninsula region. Deep-Sea Res A 38:1127–1143CrossRefGoogle Scholar
  33. Levin LA, Michener RH (2002) Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: the lightness of being at Pacific methane seeps. Limnol Oceanogr 47:1336–1345CrossRefGoogle Scholar
  34. Linke P, Altenbach AV, Graf G, Heeger T (1995) Response of deep-sea benthic foraminifera to a simulated sedimentation event. J Foram Res 25:75–82CrossRefGoogle Scholar
  35. Lochte K, Turley CM (1988) Bacteria and cyanobacteria associated with phytodetritus in the deep-sea. Nature 333:67–69CrossRefGoogle Scholar
  36. MacAvoy SE, Macko SA, Carney RS (2003) Links between chemosynthetic production and mobile predators on the Louisiana continental slope: stable carbon isotopes of specific fatty acids. Chem Geol 201:229–237CrossRefGoogle Scholar
  37. Mantoura RF, Llewellyn CA (1983) The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal Chim Acta 151:297–314CrossRefGoogle Scholar
  38. McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, Version 4. MjM Software Design, Gleneden Beach, Oregon, USAGoogle Scholar
  39. Moens T, Luyten C, Middelburg JJ, Herman PMJ, Vincx M (2002) Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Mar Ecol Prog Ser 234:127–137CrossRefGoogle Scholar
  40. Moens T, Verbeeck L, Vincx M (1999) Preservation- and incubation time-induced bias in tracer-aided grazing studies on meiofauna. Mar Biol 133:69–77CrossRefGoogle Scholar
  41. Moodley L, Middelburg JJ, Boschker HTS, Duineveld GCA, Pel R, Herman PMJ, Heip CHR (2002) Bacteria and Foraminifera: key players in a short-term deep-sea benthic response to phytodetritus. Mar Ecol Prog Ser 236:23–29CrossRefGoogle Scholar
  42. Nieuwenhuize J, Maas YEM, Middelburg JJ (1994) Rapid analysis of organic carbon and nitrogen in particulate materials. Mar Chem 44:217–224CrossRefGoogle Scholar
  43. Nyssen F, Brey T, Lepoint G, Bouquegneau J-M, De Broyer C, Dauby P (2002) A stable isotope approach to the eastern Weddell Sea trophic web: focus on benthic amphipods. Polar Biol 25:280–287Google Scholar
  44. Olafsson E, Modig H, van de Bund WJ (1999) Species specific uptake of radio-labelled phytodetritus by benthic meiofauna from the Baltic Sea. Mar Ecol Prog Ser 177:63–72CrossRefGoogle Scholar
  45. Pakhomov EA, McClelland JW, Bernard K, Kaehler S, Montoya JP (2004) Spatial and temporal shifts in stable isotope values of the bottom-dwelling shrimp Nauticaris marionis at the sub-Antarctic archipelago. Mar Biol 144:317–325CrossRefGoogle Scholar
  46. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  47. Pfannkuche O (1993) Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47° N, 20° W. Deep Sea Res II 40:135–149CrossRefGoogle Scholar
  48. Pfannkuche O, Lochte K (1993) Open ocean pelago–benthic coupling—Cyanobacteria as tracers of sedimenting salp feces. Deep Sea Res I 40:727–737CrossRefGoogle Scholar
  49. Rau GH, Hopkins TL, Torres JL (1991a) 15N/14N and 13C/12C in Weddell Sea invertebrates: implications for feeding diversity. Mar Ecol Prog Ser 77:1–6CrossRefGoogle Scholar
  50. Rau GH, Takahashi T, Des Marais DJ, Sullivan CW (1991b) Particulate organic matter δ13C variations across the Drake Passage. J Geophys Res 96:15131–15135PubMedGoogle Scholar
  51. Rau GH, Takahashi T, Des Marais DJ, Repeta DJ, Martin JH (1992) The relationship between δ13C of organic matter and [CO2(aq)] in ocean surface water: data from a JGOFS site in the northeast Atlantic Ocean and a model. Geochim Cosmochim Acta 56:1413–1419PubMedCrossRefGoogle Scholar
  52. Rudnick DT (1989) Time lags between the deposition and meiobenthic assimilation of phytodetritus. Mar Ecol Prog Ser 50:231–240CrossRefGoogle Scholar
  53. Smith KL Jr, Baldwin RJ, Karl DM, Boetius A (2002) Benthic community responses to pulses in pelagic food supply: North Pacific Subtropical Gyre. Deep Sea Res I 49:971–990CrossRefGoogle Scholar
  54. Soltwedel T (2000) Metazoan meiobenthos along continental margins: a review. Prog Oceanogr 46:59–84CrossRefGoogle Scholar
  55. Somerfield PJ, Warwick RM, Moens T (2005) Chapter 6. Meiofauna techniques. In: McIntyre A, Eleftheriou A (eds) Methods for the study of marine benthos, 3rd edn. Blackwell Science, Oxford, pp 229–272Google Scholar
  56. Sommer S, Pfannkuche O (2000) Metazoan meiofauna of the deep Arabian Sea: standing stocks, size spectra and regional variability to monsoon induced enhanced sedimentation regimes of particulate organic carbon. Deep Sea Res II 47:2957–2977CrossRefGoogle Scholar
  57. Thiermann F, Akoumianaki I, Hughes JA, Giere O (1997) Benthic fauna of a shallow-water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Mar Biol 128:149–159CrossRefGoogle Scholar
  58. Urban-Malinga B, Moens T (2006) Fate of organic matter in arctic intertidal sediments: is utilization by meiofauna important? J Sea Res 56:239–248CrossRefGoogle Scholar
  59. Vanhove S, Arntz W, Vincx M (1999) Comparative study of the nematode communities on the southeastern Weddell Sea shelf and slope (Antarctica). Mar Ecol Prog Ser 181:237–256CrossRefGoogle Scholar
  60. Vanhove S, Beghyn M, Van Gansbeke D, Bullough LW, Vincx M (2000) A seasonally varying biotope at Signy Island, Antarctic: implications for meiofaunal structure. Mar Ecol Prog Ser 202:13–25CrossRefGoogle Scholar
  61. Vanhove S, Lee HJ, Beghyn M, Van Gansbeke D, Brockington S, Vincx M (1998) The metazoan meiofauna in its biogeochemical environment: the case of an Antarctic coastal sediment. J Mar Biol Assoc UK 78:411–434Google Scholar
  62. Vanhove S, Wittoeck J, Desmet G, Van Den Berghe B, Herman RL, Bak RPM, Nieuwland G, Vosjan JH, Boldrin A, Rabitti S, Vincx M (1995) Deep sea meiofauna communities in Antarctica: structural analysis and the relation with the environment. Mar Ecol Prog Ser 127:65–76CrossRefGoogle Scholar
  63. Vermeeren H, Vanreusel A, Vanhove S (2004) Species distribution within the free-living marine nematode genus Dichromadora in the Weddell Sea and adjacent areas. Deep Sea Res II 51:1643–1664CrossRefGoogle Scholar
  64. Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. CAB International, Cambridge, USA, pp 187–195Google Scholar
  65. Wada E, Terazaki M, Kabaya Y, Nemoto T (1987) 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep Sea Res 34:829–841CrossRefGoogle Scholar
  66. Widbom J, Frithsen JB (1995) Structuring factors in a marine soft bottom community during eutrophication—an experiment with radio-labelled phytodetritus. Oecologia 101:156–168CrossRefGoogle Scholar
  67. Wieser W (1953) Die Beziehung zwishen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden marinen Nematoden. Ark Zool 4:439–484Google Scholar
  68. Witte U, Aberle N, Sand M, Wenzhöfer F (2003a) Rapid response of a deep-sea benthic community to POM enrichment: an in situ experimental study. Mar Ecol Prog Ser 251:27–36CrossRefGoogle Scholar
  69. Witte U, Wenzhöfer F, Sommer S, Boetius A, Heinz P, Aberle N, Sand M, Cremer A, Abraham W-R, Jørgensen BB, Pfannkuche O (2003b) In situ experimental evidence of the fate of a phytodetritus pulse at the abyssal sea floor. Nature 424:763–766PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Tom Moens
    • 1
  • Sandra Vanhove
    • 1
    • 2
  • Ilse De Mesel
    • 1
    • 3
  • Bea Kelemen
    • 1
    • 4
  • Thierry Janssens
    • 1
    • 5
  • Ann Dewicke
    • 1
  • Ann Vanreusel
    • 1
  1. 1.Biology Department, Marine Biology SectionGhent UniversityGentBelgium
  2. 2.The International Polar FoundationBrusselBelgium
  3. 3.IMARESYersekeThe Netherlands
  4. 4.Institute for Interdisciplinary Experimental Research, Molecular Biology Center“Babes-Bolyai” UniversityCluj-NapocaRomania
  5. 5.Department of Animal EcologyVrije Universiteit Amsterdam, Institute of Ecological SciencesAmsterdamThe Netherlands

Personalised recommendations