Polar Biology

, Volume 30, Issue 10, pp 1323–1329 | Cite as

Mega-epibenthic diversity off Terre Adélie (Antarctica) in relation to disturbance

Original Paper

Abstract

Mega-benthic assemblages have been analyzed off Terre Adélie (East Antarctica) between 20 and 110 m depth by seabed videography. The study area is dominated by high abundances of sessile suspension feeders, however, sponges are rare at this depth. There are hints and evidence that different levels of disturbance and biological dynamics affect these assemblages. Biodiversity results are interpreted with the background of an applicability of the intermediate-disturbance hypothesis (IDH).

Keywords

Intermediate-disturbance hypothesis Sea-bed video Assemblages Iceberg scouring Suspension feeders 

Notes

Acknowledgments

ICOTA project funded by IPEV. Data analysis and publication funded by Université Littoral Côte d’Opale, by guest professorship of J. Gutt. Thanks to Département du Finistère for providing the ROV and to Océanopolis for the camera, to ROV pilots A. Pottier and D. Fleury and the electronic staff of Dumont d’Urville station for their support.

References

  1. Arnaud PM (1965) Nature de l’étagement du benthos marin algal et animal dans l’Antarctique. C R Acad Sci 261:265–266Google Scholar
  2. Arnaud PM (1974) Contribution à la bionomie marine benthique des régions antarctiques et subantarctiques. Thétys 6(3):465–656Google Scholar
  3. Barnes DKA (1999) The influence of ice on polar nearshore benthos. J Mar Biol Assoc UK 79:401–407CrossRefGoogle Scholar
  4. Barnes DKA, Conlan K (2007) Disturbance, colonization and development of Antarctic benthic communities. Proc R Soc Lond B Biol 362:11–38CrossRefGoogle Scholar
  5. Beaman RJ, Harris PT (2005) Bioregionalization of the George V Shelf, East Antarctica. Cont Shelf Res 25:1657–1691CrossRefGoogle Scholar
  6. Clarke A, Arntz WE (2006) An introduction to EASIZ (Ecology of the Antarctic sea ice zone): an integrated programme of water column, benthos and bentho-pelagic coupling in the coastal environment of Antarctica. Deep-Sea Res Pt II 53:803–814CrossRefGoogle Scholar
  7. Dawber M, Powell RD (1997) Epifaunal distribution at Antarctic marine-ending glaciers: Influences of ice dynamics and sedimentation. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antarctica Publication, Siena, pp 875–884Google Scholar
  8. Dayton PK, Mordida BJ, Bacon F (1994) Polar marine communities. Am Zool 34:90–99Google Scholar
  9. Dayton PK (1989) Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245:1484–1486CrossRefGoogle Scholar
  10. Gutt J (2006) Coexistence of macro-zoobenthic species on the Antarctic shelf: an attempt to link ecological theory and results. Deep-Sea Res Pt II 53:1009–1028CrossRefGoogle Scholar
  11. Gutt J (2007) Antarctic macro-zoobenthic communities: a review and an ecological classification. Antarct SciGoogle Scholar
  12. Gutt J, Piepenburg D (2003) Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Progr Ser 253:77–83Google Scholar
  13. Hureau J-C, Koubbi P, White M, Vacchi M (2000) Ecological data on Trematomus hansoni, a coastal fish from Terre Adélie (Antarctica). In: Davison W, Howard-Williams C, Broady P (eds). Antarctic ecosystems: models for wider ecological understanding. Caxton Press, Christchurch, New Zealand, pp 96–100Google Scholar
  14. Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101CrossRefGoogle Scholar
  15. Johst K, Huth A (2005) Testing the intermediate disturbance hypothesis: when will there be two peaks of diversity? Divers Distrib 11:111–120CrossRefGoogle Scholar
  16. Koubbi P, Hureau J-C, Vacchi M, White M (1997) Results of the preliminary survey on the coastal distribution of fish larvae in Adelie Land (Southern Ocean) during January–February 1996. Cybium 21(4):381–392Google Scholar
  17. Loots C, Swadling KM, Koubbi P (2007) Annual cycle of distribution of three ice-associated copepods along the coast near Dumont d’Urville, Terre Adélie (Antarctica). J Mar SystGoogle Scholar
  18. Mawson D (1940) Marine biological programme and other zoological and botanical activities. Series A, vol. II. Oceanography. Australasian Antarctic expedition 1911–1914, Sydney, Australia (179pp)Google Scholar
  19. Schiaparelli S, Linse K (2006) A reassessment of the distribution of the common Antarctic scallop Adamussium colbecki (Smith, 1902). Deep-Sea Res Pt II 53:912–920CrossRefGoogle Scholar
  20. Starmans A, Gutt J (2002) Mega-epibenthic diversity: a polar comparison. Mar Ecol Progr Ser 225:45–52Google Scholar
  21. Thrush S, Dayton P, Cattaneo-Vietti R, Chiantore M, Cummings V, Andrew N, Hawes I, Kim S, Kvitek R, Schwarz A-M (2006) Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep-Sea Res Pt II 53:959–971CrossRefGoogle Scholar
  22. Wiencke C, Clayton MN, Gómez I, Iken K, Lüder UH, Amsler CD, Karsten U, Hanelt D, Bischof K, Dunton K (2006) Life strategy, ecophysiology and ecology of seaweeds in polar waters. Rev Environ Sci Biotech, DOI 10.1007/s11157–006–9106-zGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Alfred Wegener Institute for Polar and Marine ResearchColumbusstrGermany
  2. 2.Laboratoire d’Ichtyoécologie MarineUniversité du Littoral Côte d’Opale Boulogne-sur-Mer cedexFrance
  3. 3.Département Milieux et Peuplements AquatiquesUMR 5178 Biologie des Organismes Marins et EcosystèmesParisFrance

Personalised recommendations