Advertisement

Polar Biology

, Volume 30, Issue 10, pp 1265–1273 | Cite as

Diversity and species distribution of polychaetes, isopods and bivalves in the Atlantic sector of the deep Southern Ocean

  • Kari E. Ellingsen
  • Angelika Brandt
  • Brigitte Ebbe
  • Katrin Linse
Original Paper

Abstract

We examined deep-sea benthic data on polychaetes, isopods and bivalves from the Atlantic sector of the Southern Ocean. Samples were taken during the expeditions EASIZ II (1998), ANDEEP I and II (2002) (depth: 742–6,348 m). The range between sites varies from 3 to 1,900 km. Polychaetes (175 species in total) and isopods (383 species) had a high proportion of species restricted to one or two sites (72 and 70%, respectively). Bivalves (46 species) had a higher proportion of species represented at more sites. Beta diversity (Whittaker and Jaccard) was higher for polychaetes and isopods than for bivalves. The impact of depth on species richness was not consistent among groups; polychaetes showed a negative relationship to depth, isopods displayed highest richness in the middle depth range (2,000–4,000 m), whereas bivalves showed no clear relationship to depth. Species richness was not related to latitude (58–74°S) or longitude (22–60°W) for any group.

Keywords

Species Richness Bivalve Polychaete Southern Ocean Beta Diversity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Financial support for the ANDEEP I and II expeditions was provided by the German Science Foundation (Br 1121/20, 1-3; 436 RUS 17/91/03; 436 RUS 17/19/04; HI 351/3-1). KEE acknowledges the support of the Research Council of Norway. We are grateful to Prof. W. Arntz, Chief Scientist on ANT XV-3, to Prof. D. Fütterer, Chief Scientist on ANT XIX/3-4, and to the captains and crews of RV Polarstern for help on board. This is ANDEEP publication no. 53.

References

  1. Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, CambridgeGoogle Scholar
  2. Brandt A (1991) Zur Besiedlungsgeschichte des antarktischen Schelfes am Beispiel der Isopoda (Crustacea, Malacostraca). Berichte zur Polarforschung 98:1–240Google Scholar
  3. Brandt A (2000) Hypotheses on Southern Ocean peracarid evolution and radiation (Crustacea, Malacostraca). Antarct Sci 12(3):269–275Google Scholar
  4. Brandt A (2001) Great differences in peracarid crustacean density between the Arctic and Antarctic deep sea. Polar Biol 24:785–789CrossRefGoogle Scholar
  5. Brandt A (2005) Evolution of Antarctic biodiversity in the context of the past: the importance of the Southern Ocean deep sea. Antarct Sci 17:509–521CrossRefGoogle Scholar
  6. Brandt A, Barthel D (1995) An improved supra- and epibenthic sledge for catching Peracarida (Crustacea, Malacostraca). Ophelia 43:15–23Google Scholar
  7. Brandt A, Brökeland W, Brix S, Malyutina M (2004a) Diversity of Southern Ocean deep-sea Isopoda (Crustacea, Malacostraca)—a comparison with shelf data. Deep-Sea Res II 51:1753–1768CrossRefGoogle Scholar
  8. Brandt A, Hilbig B (2004) ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns)—a tribute to Howard L. Sanders. Deep-Sea Res II 51(14–16):1457–1919CrossRefGoogle Scholar
  9. Brandt A, De Broyer C, Gooday AJ, Hilbig B, Thomson MRA (2004b) Introduction to ANDEEP (ANtarctic benthic DEEP-sea biodiversity: colonization history and recent community patterns: a tribute to Howard L. Sanders. Deep-Sea Res II 51(14–16):1457–1467CrossRefGoogle Scholar
  10. Brandt A, Brenke N, Andres H-G, Brix S, Guerrero-Kommritz J, Mühlenhardt-Siegel U, Wägele J-W (2005a) Diversity of peracarid crustaceans (Malacostraca) from the abyssal plain of the Angola Basin. Org Divers Evol 5:105–112CrossRefGoogle Scholar
  11. Brandt A, Ellingsen KE, Brix S, Brökeland W, Malyutina M (2005b) Southern Ocean deep-sea isopod species richness (Crustacea, Malacostraca): influences of depth, latitude and longitude. Polar Biol 28:284–289CrossRefGoogle Scholar
  12. Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday A, Hilbig B, Linse K, Thomson M, Tyler P (2007) The biodiversity of the deep Southern Ocean benthos. Phil Trans R Soc B 362:39–66PubMedCrossRefGoogle Scholar
  13. Brökeland W (2004) Systematics, zoogeography, evolution and biodiversity of Antarctic deep-sea Isopoda (Crustacea: Malacostraca). Dissertation Thesis, University of HamburgGoogle Scholar
  14. Brenke N (2005) An epibenthic sledge for operations on marine soft bottom and bedrock. Mar Technol Soc J 39:10–20CrossRefGoogle Scholar
  15. Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255–279CrossRefGoogle Scholar
  16. Brown JH (1995) Macroecology. The University of Chicago Press, LondonGoogle Scholar
  17. Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159CrossRefGoogle Scholar
  18. Clarke A (1992) Is there a latitudinal diversity cline in the sea? Trends Ecol Evol 7:286–287CrossRefGoogle Scholar
  19. Clarke A, Lidgard S (2000) Spatial patterns of diversity in the sea: bryozoan species richness in the North Atlantic. J Anim Ecol 69:799–814CrossRefGoogle Scholar
  20. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev 41:47–114Google Scholar
  21. Colwell RK (2004) estimates: Statistical Estimation of Species Richness and Shared Species from Samples, Version 7.5. http://viceroy.eeb.uconn.edu/estimatesGoogle Scholar
  22. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Phil Trans R Soc Lond B 345:101–118CrossRefGoogle Scholar
  23. Diaz RJ (2004) Biological and physical processes structuring deep-sea surface sediments in the Scotia and Weddell Seas, Antarctica. Deep-Sea Res II 51:1515–1532CrossRefGoogle Scholar
  24. Ellingsen KE, Gray JS (2002) Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf? J Anim Ecol 71:373–389CrossRefGoogle Scholar
  25. Ellingsen KE, Clarke KR, Somerfield PJ, Warwick RM (2005) Taxonomic distinctness as a measure of diversity applied over a large scale: the benthos of the Norwegian continental shelf. J Anim Ecol 74:1069–1079CrossRefGoogle Scholar
  26. Etter RJ, Grassle JF (1992) Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature 360:576–578CrossRefGoogle Scholar
  27. Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, CambridgeGoogle Scholar
  28. Gage JD (2004) Diversity in the deep-sea benthic macrofauna: the importance of local ecology, the large-scale, history and the Antarctic. Deep-Sea Res II 51(14–16):1689–1709CrossRefGoogle Scholar
  29. Gaston KJ (1994) Rarity. Chapman & Hall, LondonGoogle Scholar
  30. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227PubMedCrossRefGoogle Scholar
  31. Gaston KJ, Blackburn TM (1996) Global scale macroecology: interactions between population size, geographic range size and body size in the Anseriformes. J Anim Ecol 65:701–714CrossRefGoogle Scholar
  32. Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance-range-size relationships: an appraisal of mechanisms. J Anim Ecol 66:579–601CrossRefGoogle Scholar
  33. Gerdes D, Klages M, Arntz WE, Herman RL, Galéron J, Hain S (1992) Quantitative investigations on macrobenthos communities of the southeastern Weddell Sea shelf based on multi box corer samples. Polar Biol 12:291–301CrossRefGoogle Scholar
  34. Glover AG, Smith CR, Paterson GLJ, Wilson GDF, Hawkins L, Sheader M (2002) Polychaete species diversity in the central Pacific abyss: local and regional patterns, and relationships with productivity. Mar Ecol Prog Ser 240:157–170Google Scholar
  35. Grassle JG, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimated from quantitative bottom samples. Am Nat 139:313–341CrossRefGoogle Scholar
  36. Guerrero-Kommritz J, Blazewicz-Paszkowycz M (2004) New species of Tanaella Norman and Stebbing, 1886 (Crustacea: Tanaidacea: Tanaellidae) from the deep sea off the Antarctic and the Angola Basin with a key to the genus. Zootaxa 459:1–20Google Scholar
  37. Harrison S, Ross SJ, Lawton JH (1992) Beta diversity on geographic gradients in Britain. J Anim Ecol 61:151–158CrossRefGoogle Scholar
  38. Hessler RR, Sanders HL (1967) Faunal diversity in the deep-sea. Deep-Sea Res 14:65–78Google Scholar
  39. Hilbig B (2001) Deep-sea polychaetes in the Weddell Sea and Drake Passage: first quantitative results. Polar Biol 24:538–544CrossRefGoogle Scholar
  40. Hilbig B (2004) Polychaetes of the deep Weddell and Scotia Seas – composition and zoogeographical links. Deep-Sea Res II 51:1817–1825CrossRefGoogle Scholar
  41. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382CrossRefGoogle Scholar
  42. Lambshead JD, Boucher G (2003) Marine nematode deep-sea biodiversity—hyperdiverse or hype? J Biogeogr 30:475–485CrossRefGoogle Scholar
  43. Levin LA, Etter RJ, Rex MA, Gooday AJ, Smith CR, Pineda J, Stuart CT, Hessler RR, Pawson D (2001) Environmental influences on regional deep-sea species diversity. Annu Rev Ecol Syst 32:51–93CrossRefGoogle Scholar
  44. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967CrossRefGoogle Scholar
  45. Linse K (2004) Scotia Arc deep-water bivalves: composition, distribution and relationship to the Antarctic shelf fauna. Deep-Sea Res II 51:1827–1837CrossRefGoogle Scholar
  46. Linse K, Griffiths HJ, Barnes DKA, Clarke A (2006) Biodiversity and biogeography of Antarctic and sub-Antarctic Mollusca. Deep-Sea Res II 53:985–1008CrossRefGoogle Scholar
  47. Lipps JH, Hickman CS (1982) Origin, age, and evolution of Antarctic deep-sea faunas. In: Ernst WG, JG Morin (eds) The Environment of the deep sea. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  48. Magurran AE (2004) Measuring biological diversity. Blackwell Publishing, OxfordGoogle Scholar
  49. Menzies RJ, George RY, Rowe GT (1973) Abyssal environment and ecology of the world oceans. Wiley, New York, London, Sydney, TorontoGoogle Scholar
  50. Paterson GLJ, Wilson GDF, Cosson N, Lamont PA (1998) Hessler and Jumars (1974) revisited: abyssal polychaete assemblages from the Atlantic and Pacific. Deep-Sea Res 45:225–251CrossRefGoogle Scholar
  51. Price ARG, Keeling MJ, O’Callaghan CJ (1999) Ocean-scale patterns of ‘biodiversity’ of Atlantic asteroids determined from taxonomic distinctness and other measures. Biol J Linnean Soc 66:187–203CrossRefGoogle Scholar
  52. Raupach MJ, Held C, Wägele J-W (2004) Multiple colonization of the deep sea by the Asellota (Crustacea: Peracarida: Isopoda). Deep-Sea Res II 51:1787–1795CrossRefGoogle Scholar
  53. R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, AustriaGoogle Scholar
  54. Rex MA, Etter RJ, Stuart CT (1997) Large-scale patterns of species diversity in the deep-sea benthos. In: Ormond RFG, Gage JD, Angel MV (eds) Marine biodiversity. Cambridge University Press, Cambridge, UKGoogle Scholar
  55. Rex MA, McClain CR, Johnson NA, Etter RJ, Allen JA, Bouchet P, Warén A (2005) A source-sink hypothesis for abyssal biodiversity. Am Nat 165(2):163–178PubMedCrossRefGoogle Scholar
  56. Rex MA, Etter RJ, Morris JS, Crouse J, McClain CR, Johnson NA, Stuart CT, Deming JW, Thies R, Avery R (2006) Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar Ecol Prog Ser 317:1–8Google Scholar
  57. Sanders HL, Hessler RR (1969) Ecology of the deep-sea benthos. Science 163:1419–1424PubMedCrossRefGoogle Scholar
  58. Schlacher TA, Newell P, Clavier J, Schlacher-Hoenlinger MA, Chevillon C, Britton J (1998) Soft-sediment benthic community structure in a coral reef lagoon - the prominence of spatial heterogeneity and ‘spot endemism’. Mar Ecol Prog Ser 174:159–174Google Scholar
  59. Snelgrove PVR, Smith CR (2002) A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor. Oceanogr Mar Biol Annu Rev 40:311–342Google Scholar
  60. Stuart CT, Rex MA, Etter RJ (2003) Large-scale spatial and temporal patterns of deep-sea benthic species diversity. In Tyler PA (ed) Ecosystems of the deep oceans, vol 28. Ecosystems of the world Elsevier, AmsterdamGoogle Scholar
  61. Venables WN, Ripley BD (1998) Modern Applied Statistics with S-PLUS. Springer, New YorkGoogle Scholar
  62. Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338CrossRefGoogle Scholar
  63. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251CrossRefGoogle Scholar
  64. Witman JD, Etter RJ, Smith F (2004) The relationship between regional and local species diversity in marine benthic communities: a global perspective. PNAS 101(44):15664–15669PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Kari E. Ellingsen
    • 1
  • Angelika Brandt
    • 2
  • Brigitte Ebbe
    • 3
  • Katrin Linse
    • 4
  1. 1.Norwegian Institute for Nature Research (NINA), Polar Environmental CentreTromsøNorway
  2. 2.Zoological MuseumUniversity of HamburgHamburgGermany
  3. 3.DZMB-CeDAMar c/o Zoologisches Forschungsmuseum KönigBonnGermany
  4. 4.British Antarctic SurveyNatural Environmental Research CouncilCambridgeUK

Personalised recommendations