Polar Biology

, Volume 30, Issue 10, pp 1239–1244

Population variability in heat shock proteins among three Antarctic penguin species

  • Andrés Barbosa
  • Santiago Merino
  • Jesus Benzal
  • Javier Martínez
  • Sonia García-Fraile
Original Paper

Abstract

Heat shock proteins (HSPs) are synthesised under stressful conditions such as exposure to elevated temperatures, contamination, free radicals, UV light or pathophysiological states resulting from parasites and/or pathogens. HSPs function to protect cells by means of modulation of protein folding. In Antarctica, these proteins have been studied in such organisms as protozoa and fishes, without attention to geographical variation. We studied the variation of HSP70 and HSP60 levels in Gentoo, Adelie and Chinstrap penguins among different populations along the Antarctic Peninsula from King George Island (62°15′S) to Avian Island (67°46′S). Our results show that the northern population of Gentoo penguin showed higher levels of HSP70 and HSP60 than the southern population. High temperature, human impact and immunity as a proxy for parasites and diseases in northern locations could explain such variation. Adelie penguin only showed significant geographical variation in HSP70, increasing north to south, a pattern perhaps related to increased UV radiation and decreased temperatures from north to south. Chinstrap penguin shows no population differences in the variation in neither HSP70 nor HSP60, although HSP70 showed marginally significant differences. Sexual differences in the level of these proteins are also discussed.

Keywords

Antarctica Ecophysiology Environmental gradient Heat shock protein Pygoscelis adeliae Pygoscelis antarctica Pygoscelis papua Stress 

References

  1. Barbosa A, Merino S, Benzal J, Martinez J, Garcia-Fraile S (2007) Geographic variation in immunoglobulin levels in pygoscelid penguins. Polar Biol 30:219–225CrossRefGoogle Scholar
  2. Bargagli R (2005) Antarctic ecosystems. Environmental contamination, climate change and human impact. Ecological studies, vol 175. Springer, BerlinGoogle Scholar
  3. Bosch TCG, Krylow SM, Bode HR, Steele RE (1988) Thermotolerance and synthesis of heat shock proteins: these responses are present in Hydra attenuate but absent in Hydra oligactis. Proc Natl Acad Sci USA 85:7927–7931PubMedCrossRefGoogle Scholar
  4. Boutette JB, Ramsay EC, Potgieter LND, Kania SA (2002) An improved polymerase chain reaction-restriction fragment length polymorphism assay for gender identification in birds. J Avian Med Surg 16:198–202CrossRefGoogle Scholar
  5. Buckley AB, Place SP, Hofmann GE (2004) Regulation of heat shock genes in isolated hepatocytes from an Antarctic fish, Trematomus bernacchii. J Exp Biol 207:3649–3656PubMedCrossRefGoogle Scholar
  6. Carey HV, Sills NS, Gorham DA (1999) Stress proteins in mammalian hibernation. Am Zool 39:825–835Google Scholar
  7. Carpenter CM, Hofmann GE (2000) Expression of 70kDa heat shock proteins in Antarctic and New Zealand notothenioid fishes. Comp Biochem Physiol Part A 125:229–238CrossRefGoogle Scholar
  8. Collins PL, Hightower LE (1982) Newcastle disease virus stimulate the celluar accumulation of stress (heat-shock) messengers-RNAs and proteins. J Virol 44:703–707PubMedGoogle Scholar
  9. Ellegren H (1996) First gene on the avian W chromosome (CHD) provides a tag for universal sexing of non-ratite birds. Proc R Soc Lond B 263:1635–1641CrossRefGoogle Scholar
  10. Fader SC, Yu Z, Spotila JR (1994) Seasonal variation in heat shock proteins (HSP70) in stream fish under natural conditions. J Therm Biol 19:335–341CrossRefGoogle Scholar
  11. Gardner H, Kerry K, Riddle M, Brouwer S, Gleeson L (1997) Poultry virus infection in Antarctic penguins. Nature 387:245PubMedCrossRefGoogle Scholar
  12. Gauthier-Clerc M, Eterradossi N, Toquin D, Guittet M, Kuntz G, Le Maho Y (2002) Serological survey of the king penguin, Aptenodytes patagonicus, in Crozet Archipielago for antibodies to infectious bursal disease influenza A and Newcastle disease viruses. Polar Biol 25:316–319Google Scholar
  13. Gregersen N, Bross P, Andressen BS, Pedersen CB, Corydon TJ, Bolund L (2001) The role of chaperon-assisted folding and quality control in inborn errors of metabolism: protein folding disorders. J Inherit Metab Dis 24:2819–2212CrossRefGoogle Scholar
  14. Hofman RJ, Jatko J (2001) Assessment of the possible accumulative environmental impacts of commercial ship-based tourism in the Antarctic Peninsula area (http://www.nsf.gov/pubs/2002/nsf02201/nsf02201.pdf)Google Scholar
  15. Hofmann GE, Buckley BA, Airaksinen S, Keen JE, Somero GN (2000) Heat-shock protein expression is absent in the Antarctic fish Trematomus bernachii (Family: Nothoteniidae). J Exper Biol 203:2331–2339Google Scholar
  16. Karentz D, Bosch I (2001) Influence of ozone-related increases in ultraviolet radiation on Antarctic marine organisms. Am Zool 41:3–16CrossRefGoogle Scholar
  17. Kerry K, Riddle M, Clarke K (1999) Diseases of Antarctic wildlife. A report for SCAR and COMNAP. SCARGoogle Scholar
  18. King JC, Turner J, Marshall GJ, Connolley WM, Lachlan-Cope TA (2003) Antarctic peninsula climate variability and its causes as revealed by analysis of instrumental records. AGU Antarct Res Ser 79:17–30Google Scholar
  19. La Terza A, Papa G, Miceli C, Luporini P (2001) Divergence between two Antarctic species of ciliate Euplotes, E. focardii and E. nobilii, in the expression of heat-shock protein 70 genes. Mol Ecol 10:1061–1067PubMedCrossRefGoogle Scholar
  20. Linquist L (1986) The heat -shock response. Annu Rev Biochem 55:1151–1191CrossRefGoogle Scholar
  21. Madronich S, McKenzie RL, Caldwell MM, Bjorn LO (1994) Changes in ultraviolet radiation reaching the earth’s surface. In: UNEP (ed) Environmental effects of ozone depletion. UNEP, Nairobi, KenyaGoogle Scholar
  22. Martinez J, Perez-Serrano J, Bernadina WE, Rodríguez-Caabeiro F (2001) Stress response to cold in Trichinella species. Cryobiology 43:293–302PubMedCrossRefGoogle Scholar
  23. Mateo R, Guitart R (2003) Heavy metals in livers of waterbirds from Spain. Arch Environ Contam Toxicol 44:398–404PubMedCrossRefGoogle Scholar
  24. Merino S, Martinez J, Barbosa A, Moller AP, de Lope F, Perez J, Rodríguez-Caabeiro F (1998) Increase in heat-shock protein from blood cells in response of nestlings house martins (Delichon urbica) to parasitism: an experimental approach. Oecologia 116:343–347CrossRefGoogle Scholar
  25. Merino S, Martínez J, Moller AP, Barbosa A, de Lope F, Rodríguez-Caabeiro F (2002) Blood stress protein levels in relation to sex and parasitism of barn swallows (Hirundo rustica). Ecoscience 9:300–305Google Scholar
  26. Morales J, Moreno J, Merino S, Tomás G, Martínez J, Garamszegi LZ (2004) Association between immune parameters and stress in breeding pied flycatcher (Ficedula hypoleuca) females. Can J Zool 82:1484–1492CrossRefGoogle Scholar
  27. Moreno J, Merino S, Martínez J, Sanz JJ, Arriero E (2002) Heterophil/lymphocyte ratios and heat-shock protein levels are related to growth in nestling birds. Ecoscience 9:434–439Google Scholar
  28. Morimoto RI (1991) Heat shock: the role of transient inducible responses in cell damage, transformation and differentiation. Cancer Cells 3:295–301PubMedGoogle Scholar
  29. Parsell DA, Lindquist S (1993) The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Gent 27:437–496CrossRefGoogle Scholar
  30. Place SP, Hofmann GE (2005) Constitutive expression of a stress-inducible heat shock protein gene, HSP70, in phylogenetically distant Antarctic fish. Polar Biol 28:261–267CrossRefGoogle Scholar
  31. Ritossa F (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573CrossRefGoogle Scholar
  32. Sanders BM, Hope C, Pascoe VM, Martin LS (1991) Characterization of the stress protein response in two species of Collisell limpets with different temperature tolerances. Physiol Zool 64:1471–1489Google Scholar
  33. Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 235:12111–12114Google Scholar
  34. Shindell DT, Grewe V (2002) Separating the influence of halogens and climate changes on ozone recovery in the upper stratosphere. J Geophys Res Atmos 107:4144. doi:10.1029/2001JD000420Google Scholar
  35. Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92:1725–1742PubMedGoogle Scholar
  36. Sorensen JG, Kristensen TN, Loeschcke V (2003) The evolutionary and ecological role of heat shock proteins. Ecol Lett 6:1025–1037CrossRefGoogle Scholar
  37. Sutherst RW (2001) The vulnerability of animal and human health to parasites under global change. Int J Parasitol 31:933–948PubMedCrossRefGoogle Scholar
  38. Taggart MA, Figuerola J, Green AJ, Mateo R, Deacon C, Osborn D, Meharg AA (2006) After the aznalcollar mine spill: arsenic, zinc, selenium, lead and copper levels in livers and bones of five waterfowl species. Environ Res 100:349–361PubMedCrossRefGoogle Scholar
  39. Trautinger F, KindasMugge I, Knobler RM, Honigsmann H (1996) Stress protein in the cellular response to ultraviolet radiation. J Photochem Photobiol B Biol 35:141–148CrossRefGoogle Scholar
  40. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2004) The SCAR READER project: toward a high-quality database of mean Antarctic meteorological observations. J Clim 17:2890–2898CrossRefGoogle Scholar
  41. Vayda ME, Yuan ML (1994) The heat shock response in an antarctic alga is evident a 5°C. Plant Mol Biol 24:229–233PubMedCrossRefGoogle Scholar
  42. Werner I, Nagel R (1997) Stress protein HSP60 and HSP70 in three species of amphipods exposed to cadmium, diazinon, dieldrin and flouranthene. Environ Toxicol Chem 16:2393–2403CrossRefGoogle Scholar
  43. Williams TD (1995) The penguins. Oxford University Press, OxfordGoogle Scholar
  44. Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Andrés Barbosa
    • 1
  • Santiago Merino
    • 2
  • Jesus Benzal
    • 1
  • Javier Martínez
    • 3
  • Sonia García-Fraile
    • 2
  1. 1.Departamento de Ecología Funcional y EvolutivaEstación Experimental de Zonas Áridas, CSICAlmeríaSpain
  2. 2.Departamento de Ecología EvolutivaMuseo Nacional de Ciencias Naturales, CSICMadridSpain
  3. 3.Departamento de Microbiología y Parasitología, Facultad de FarmaciaUniversidad de Alcalá de HenaresAlcalá de HenaresSpain

Personalised recommendations