Advertisement

Polar Biology

, Volume 30, Issue 8, pp 1059–1068 | Cite as

Is the Scotia Sea a centre of Antarctic marine diversification? Some evidence of cryptic speciation in the circum-Antarctic bivalve Lissarca notorcadensis (Arcoidea: Philobryidae)

  • Katrin LinseEmail author
  • Therese Cope
  • Anne-Nina Lörz
  • Chester Sands
Original Paper

Abstract

The bivalve Lissarca notorcadensis is one of the most abundant species in Antarctic waters and has colonised the entire Antarctic shelf and Scotia Sea Islands. Its brooding reproduction, low dispersal capabilities and epizoic lifestyle predict limited gene flow between geographically isolated populations. Relationships between specimens from seven regions in the Southern Ocean and outgroups were assessed with nuclear 28S rDNA and mitochondrial cytochrome oxidase subunit I (COI) genes. The 28S dataset indicate that while Lissarca appears to be a monophyletic genus, there is polyphyly between the Limopsidae and Philobryidae. Thirteen CO1 haplotypes were found, mostly unique to the sample regions, and two distinct lineages were distinguished. Specimens from the Weddell and Ross Sea form one lineage while individuals from the banks and islands of the Scotia Sea form the other. Within each lineage, further vicariance was observed forming six regionally isolated groups. Our results provide initial evidence for reproductively isolated populations of L. notorcadensis. The islands of the Scotia Sea appear to act as centres of speciation in the Southern Ocean.

Keywords

Lissarca notorcadensis Bivalvia Antarctic Cytochrome oxidase I Cryptic species 

Notes

Acknowledgment

We are grateful to the cruise leaders, captains, officers and crews of PFS Polarstern (ANT XIX-4, ANT XIX-5 and ANT XXI-2) and of RV Tangaroa (TAN0402) who enabled us to collect the samples for this study. Thanks are due to S. Lockhardt for access to ANDEEP I cidaroid sea urchins hosting Lissarca and to H. Griffiths for providing the map. NERC (NER/M/S/2003/00102) funded the core research programme. The FRST Program CO1X0502 supported the work on the Ross Sea samples held by the NIWA Marine Invertebrate Collection. This paper is a contribution to British Antarctic Survey core project ‘BIOPEARL’, ANDEEP publication no 71 and linked with the SCAR ‘EBA’ programme.

References

  1. Allcock AL, Breirley AS, Thorpe JP, Rodhouse PG (1997) Restricted geneflow and evoltuionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar Biol 129:97–102CrossRefGoogle Scholar
  2. Allcock AL, Strugnell JM, Prodoehl P, Piatkowski U, Vecchione M (2007) A new species of Pareledone (Cephalopoda: Octopodidae) from the Antarctic Peninsula. Polar Biol doi: 10.1007/s00300-006-0248-9
  3. Allegrucci G, Carchini G, Todisco V, Convey P, Sbordoni V (2006) A molecular phylogeny of Antarctic chironomidae and its implications for biogeographical history. Polar Biol 29:320–326CrossRefGoogle Scholar
  4. Avise JC (2004) Molecular markers. Sinauer, Sunderland, p 541Google Scholar
  5. Barker PF, Burrell J (1977) The opening of the Drake passage. Mar Geol 25:15–34CrossRefGoogle Scholar
  6. Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A (2006) Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol 72(8):5159–5164PubMedCrossRefGoogle Scholar
  7. Brey T, Hain S (1992) Growth, reproduction and production of Lissarca notorcadensis (Bivalvia, Philobryidae) in the Weddell Sea, Antarctica. Mar Ecol Prog Ser 82:219–226Google Scholar
  8. Brey T, Clarke A (1993) Population dynamics of marine benthic invertebrates in Antarctic and subantarctic enviroments: are there unique adaptaions? Antarct Sci 5(3):253–266Google Scholar
  9. Brey T, Starmans A, Magiera U, Hain S (1993) Lissarca notorcadensis (Bivalvia: Philobryidae) living on I sp. (Echinoidea:Cidaridae):population dynamics in limited space. Polar Biol 13:89–95CrossRefGoogle Scholar
  10. Clarke A (2000) Evolution in the cold. Antarct Sci 112:257Google Scholar
  11. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol 41:47–114Google Scholar
  12. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9(10):1657–1660PubMedCrossRefGoogle Scholar
  13. Cope T, Linse K (2006) Morphological differences in Lissarca notorcadenis Melvill and Standen, 1907 from the Scotia, Weddell and Ross Seas. Deep-Sea Res II 53:903–911CrossRefGoogle Scholar
  14. Dell RK (1990) Antarctic Mollusca: with special reference to the fauna of the Ross Sea. Bull Roy Soc NZ 27:1–311Google Scholar
  15. Fahrbach E, Rohardt G, Krause G (1992) The Antarctic Coastal Current in the southeastern Weddell Sea. Polar Biol 12:171–182CrossRefGoogle Scholar
  16. Fahrbach E, Rohardt G, Schroeder M, Strass V (1994) Transport and structure of the Weddell Gyre. Annales Geophysicae 12:840–855CrossRefGoogle Scholar
  17. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  18. Frankham R, Ballou JD, Briscoe DA (2004) A Primer of conservation genetics. University Press, Cambridge pp 234Google Scholar
  19. Frati F, Spinsant G, Dallai R (2001) Genetic variation of mtCOII gene sequences in the collembolan Isotoma klovstadi from Victoria Land, Antarctica: evidence of population differentiation. Polar Biol 12:934–940CrossRefGoogle Scholar
  20. Freckman DW, Virginia RA (1997) Low-diversity Antarctic soil nematode communities: distribution and response to disturbance. Ecology 78(2):363–369CrossRefGoogle Scholar
  21. Griffiths HJ, Linse K, Crame JA (2003) SOMBASE—Southern Ocean Mollusc Database: a tool for biogeographic analysis in diversity and ecology. Org Divers Evol 3(3):207–213CrossRefGoogle Scholar
  22. Gutt J, Sirenko BI, Arntz WE, Smirnov IS, De Broyer C (2000) Biodiversity of the Weddell Sea: macrozoobenthic species (demrsal fish included) sampled during the expedition ANT XIII/3 (EASIZ I) with RV ‘Polarstern’. Ber Polarforsch 372Google Scholar
  23. Hain S (1990) Die beschalten benthischen Mollusken (Gastropoda und Bivalvia) des Weddellmeeres, Antarktis. Berichte zur Polarforschung 70:1–181Google Scholar
  24. Held C (2000) Phylogeny and biogeography of serolid isopods (Crustacea, Isdopoda, Serolidae) and the use of ribosomal expension segments in molecular systematics. Mol Phylogenet Evol 15(2):165–178PubMedCrossRefGoogle Scholar
  25. Held C, Wägele JW (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaertiliidae). Scientia Marina 69(2):175–181CrossRefGoogle Scholar
  26. Held C, Leese F (2006) The utility of fast evolving molecular markers for studying speciation in the Antarctic benthos. Polar Biol 30:513–521CrossRefGoogle Scholar
  27. Hofmann EE, Klinck JM, Locarnini RA, Fach B, Murphy E (1998) Krill transport in the Scotia Sea and environs. Antarct Sci 10:406–415Google Scholar
  28. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  29. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Paleogeogr Paleoclimatol Paleoecol 198(1–2):11–37CrossRefGoogle Scholar
  30. Linse K, Griffiths HJ, Barnes DKA, Clarke A (2006) Biodiversuty and biogeography of Antarctic and sub-Antarctic Mollusca. Deep-Sea Res II 53:985–1008CrossRefGoogle Scholar
  31. Littlewood DTJ (1994) Molecular phylogenetics of cupped oysters based on partial 28S rDNA gene sequences. Mol Phylogenet Evol 3:221–229PubMedCrossRefGoogle Scholar
  32. Lörz AN, Maas EW, Linse K, Fenwick GD (2007) Epimeria schiaparelli sp. nov., an amphipod crustacean (family Epimeriidae) from the Ross Sea, Antarctica, with molecular characterisation of the species complex. Zootaxa 1402:23–37Google Scholar
  33. Maslen NR, Convey P (2006) Nematode diversity and distribution in the southern maritime Antarctic—clues to history? Soil Biol Biochem 38(10):3141–3151CrossRefGoogle Scholar
  34. Matsumoto M (2003) Phylogenetic analysis of the subclass. Pteriomorphia (Bivalvia) from mtDNA COI sequences. Mol Phylogenet Evol27(33):429–440PubMedCrossRefGoogle Scholar
  35. Orsi AH, Nowlin WD, Whitworth T (1993) On the circulation and stratification of the Weddell Gyre. Deep-Sea Res 40:169–203CrossRefGoogle Scholar
  36. Orsi AH, Whitworth T, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res Part I-Oceanogr Res Pap 42(5):641–673CrossRefGoogle Scholar
  37. Page TJ, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826Google Scholar
  38. Pawlowski J, Fahrni JF, Brykczynska U, Habura A, Bowser SS (2002) Molecular data reveal high taxonomic diversity of allogromiid Foraminifera in Explorers Cove (McMurdo Sound, Antarctica). Polar Biol 25(2):96–105Google Scholar
  39. Powell AWP (1951) Antarctic and sub-Antarctic Mollusca: Pelecypoda and Gastropoda. Discov Rep 26:49–196Google Scholar
  40. Prezant RS, Showers M, Winstead RL, Cleveland C (1992) Reproductive ecology of the Antarctic bivalve Lissarca notorcadensis (Philobryidae). Am Malacol Bull 9(2):173–186Google Scholar
  41. Raupach MJ, Wägele JW (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarct Sci 18:191–198CrossRefGoogle Scholar
  42. Raupach MJ, Held C, Wägele JW (2004) Multiple colonization of the deep sea by the Asellota (Crustacea: Peracarida: Isopoda). Deep-SEa Res II 51:1787–1795CrossRefGoogle Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinform 19:1572–1574CrossRefGoogle Scholar
  44. Ronquist F, Huelsenbeck JP (2005) Bayesian analysis of molecular evolution using MrBayes. In: Nielsen R (eds) Statistical methods in molecular evolution. Springer, New YorkGoogle Scholar
  45. Scherer RP, Aldahan A, Tulaczyk S, Possnert G, Engelhardt H, Kamb B (1998) Pleistocene collapse of the West Antarctic Ice sheet. Science 281:82–85CrossRefPubMedGoogle Scholar
  46. Stary J, Block W (1998) Distribution and biogeography of oribatid mites (Acari: Oribatida) in Antarctica, the sub-Antarctic islands and nearby land areas. J Nat Hist 32(6):861–894Google Scholar
  47. Stein M, Heywood RB (1994) Antarctic environment—physical oceanography: the Antarctic Peninsula and Southwest Atlantic region of the Southern Ocean. In: El-Sayed SZ (eds) Southern Ocean ecology. CPU, Cambridge pp 11–24Google Scholar
  48. Stevens MI, Hogg ID (2003) Long-term isolation and recent range expansion revealed for the endemic springtail Gomphiocephalus hodgsoni from southern Victoria Land, Antarctica. Mol Ecol 12:2357–2369PubMedCrossRefGoogle Scholar
  49. Stevens MI, Hogg ID (2006) Contrasting levels of mitochondrial DNA variability between mites (Penthalodidae) and springtails (Hypogastruridae) from the Trans-Antarctic Mountains suggest long-term effects of glaciation an dlife history on substitution rates, and speciation processes. Soil Biol Biochem 38:3171–3180CrossRefGoogle Scholar
  50. Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Southern hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882PubMedCrossRefGoogle Scholar
  51. Swofford D (2002) Paup*. Phylogenetic Analysis using Parsimony (*and other methods). (Version 4.10beta). Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  52. Tevesz MJS (1977) Taxonomy and ecology of the Philobryidae and Limopsidae (Mollusca: Pelecypoda). Postilla 171:1–64Google Scholar
  53. Wagner DL, Liebherr JK (1992) Flightlessnes in insects. Trends Ecol Evol 7:216–220CrossRefGoogle Scholar
  54. Whitworth T, Nowlin WD, Orsi AH, Locarnini RA, Smith SG (1994) Weddell Sea Shelf Water in the Bransfield Strait and Weddell-Scotia Confluence. Deep-Sea Res Part I-Oceanogr Res Pap 41(4):629–641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Katrin Linse
    • 1
    Email author
  • Therese Cope
    • 1
  • Anne-Nina Lörz
    • 2
  • Chester Sands
    • 1
  1. 1.British Antarctic SurveyNatural Environmental Research CouncilCambridgeUK
  2. 2.National Institute of Water and Atmospheric ResearchKilbirnie WellingtonNew Zealand

Personalised recommendations