Polar Biology

, Volume 30, Issue 3, pp 277–287

Microbial community structure and ecology of subglacial sediments in two polythermal Svalbard glaciers characterized by epifluorescence microscopy and PLFA

  • Klára Kaštovská
  • Marek Stibal
  • Marie Šabacká
  • Barbora Černá
  • Hana Šantrůčková
  • Josef Elster
Original Paper

Abstract

Biological and physico-chemical characteristics of subglacial sediments were studied in Svalbard. Sediment from close proglacial and supraglacial environments was used for a comparison. Viable bacteria, cyanobacteria and microalgae were detected in subglacial sediments from two polythermal glaciers using epifluorescence microscopy and phospholipid fatty acid (PLFA) analyses. The subglacial samples were generally of higher pH values, coarser texture and lower water content, organic matter, organic carbon, and nitrogen compared to proglacial and supraglacial sediments). Bacterial counts of 1.6 × 107 cells mg− 1 OM (organic matter) were found. Cyanobacteria and algae were also of low abundance [4.2 cells mg− 1 DW (dry weight)]. Cyanobacteria comprised the major proportion of the autophotothrophic assemblages of subglacial soils. Deglaciated soils were similar to subglacial sediment in physico-chemical properties and microbial structure and numbers, unlike soil from vegetated sites or cryoconite sediment. In subglacial and deglaciated soil, relatively low diversity of microorganisms and low substrate availability was detected by PLFA analyses. Good accordance in microbial community structure assessments between epifluorescence microscopy and PLFA analyses was found. Our results suggest that the subglacial microbial populations can be divided into two groups: autochthonous microorganims (chemoheterotrophic bacteria) and allochthonous that retain the ability to proliferate and give rise to active population when conditions become favorable.

Supplementary material

References

  1. Bloem J, Deruiter PC, Koopman GJ, Lebbink G, Brussaard L (1992) Microbial numbers and activity in dried and rewetted arable soil under integrated and conventional management. Soil Biol Biochem 24:655–665CrossRefGoogle Scholar
  2. Bossio DA, Scow KM (1998) Impact of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb Ecol 35:265–278PubMedCrossRefGoogle Scholar
  3. Bottrell SH, Tranter M (2002) Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol Process 16:2363–2368CrossRefGoogle Scholar
  4. Certini G, Campbell CD, Edwards AC (2004) Rock fragments in soil support a different microbial community from the fine earth. Soil Biol Biochem 36:1119–1128CrossRefGoogle Scholar
  5. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2003) Recovery of bacteria from ancient ice. Environ Microbiol 5:433–436PubMedCrossRefGoogle Scholar
  6. Cockell CS, Rettberg P, Horneck G, Scherer K, Stokes MD (2003) Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Polar Biol 26:62–69Google Scholar
  7. Elster J, Kubečková K, Kaštovský J, Kanda H (2000) Algal primary succession on newly deglaciated Arctic moraine, Ny-Ålesund, Svalbard. In: Second international symposium on environmental research in the Arctic. NIPR, Tokyo, JapanGoogle Scholar
  8. Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb Ecol 47:329–340PubMedCrossRefGoogle Scholar
  9. Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59:3605–3617PubMedGoogle Scholar
  10. Gaidos E, Lanoil B, Thorsteinsson T, Graham A, Skidmore M, Han S-K, Rust T, Popp B (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4:327–344PubMedCrossRefGoogle Scholar
  11. Gilichinsky DA, Wagener S, Vishnivetskaya T (1995) Permafrost microbiology. Permafrost Periglac Process 6:281–291Google Scholar
  12. Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  13. Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155CrossRefGoogle Scholar
  14. Kaštovská K, Elster J, Stibal M, Šantrůčková H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microb Ecol 50:396–407PubMedCrossRefGoogle Scholar
  15. Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci USA 97:1400–1405PubMedCrossRefGoogle Scholar
  16. Krawczyk WE, Pulina M, Řehák J (1997) Similarity between the hydrologic system of the Werenskiold glacier (SW Spitsbergen) and a karst. In: Proceedings of the international congress of speleology. La-Chaux-de-Fonds, Switzerland, pp 493–496Google Scholar
  17. Marshall WA, Chalmers MO (1997) Airborne dispersal of Antarctic algae and cyanobacteria. Ecography 20:585–594CrossRefGoogle Scholar
  18. Mikucki JA, Foreman CM, Sattler B, Lyons WB, Priscu JC (2004) Geomicrobiology of Blood Falls: an iron-rich saline discharge at the terminus of the Taylor Glacier, Antarctica. Aquat Geochem 10:199–220CrossRefGoogle Scholar
  19. Nicol GW, Tscherko D, Embley TM, Prosser JI (2005) Primary succession of soil Crenarcheota across a receding glacier foreland. Environ Microbiol 7:337–347PubMedCrossRefGoogle Scholar
  20. Ohtonen R, Fritze H, Pennanen T, Jumpponen A, Trappe J (1999) Ecosystem properties and microbial community changes in primary succession on a glacier forefront. Oecologia 119:239–246CrossRefGoogle Scholar
  21. Oravecz O, Elhottová D, Krištůfek V, Šustr V, Frouz J, Tříska J, Márialigeti K (2004) Application of ARDRA and PLFA analysis in characterizing the bacterial communities of the food, gut and excrement of saprophagous larvae of Penthetria holosericea (Diptera:Bibionidae): a pilot study. Folia Microbiol 49:83–93CrossRefGoogle Scholar
  22. Pälli A, Moore JC, Jania J, Kolondra L, Głowacki P (2003) The drainage pattern of Hansbreen and Werenskioldbreen, two polythermal glaciers in Svalbard. Polar Res 22:355–371CrossRefGoogle Scholar
  23. Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251PubMedCrossRefGoogle Scholar
  24. Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull A (ed) Microbial diversity and bioprospecting. American Society for Microbiology, Washington, DC, pp 130–145Google Scholar
  25. Řehák J, Řehák J Jr, Řehák S (2004) Penetration of subglacial channel systems of Torell and Werenskiold glaciers. In: Proceedings of XIV seminar on polar meteorology and climatology. Marine Academy, Gdynia, PolandGoogle Scholar
  26. Sharp M, Parkes J, Cragg B, Fairchild IJ, Lamb H, Tranter M (1999) Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107–110CrossRefGoogle Scholar
  27. Sigler WV, Zeyer J (2002) Microbial diversity and activity along the forefields of two receding glaciers. Microb Ecol 43:397–407PubMedCrossRefGoogle Scholar
  28. Sigler WV, Crivii S, Zeyer J (2002) Bacterial success in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol 44:306–316PubMedCrossRefGoogle Scholar
  29. Skidmore ML, Sharp MJ (1999) Drainage system behaviour of a high-Arctic polythermal glacier. Ann Glaciol 28:209–215Google Scholar
  30. Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a high Arctic glacier. Appl Environ Microbiol 66:3214–3220PubMedCrossRefGoogle Scholar
  31. Skidmore M, Anderson SP, Sharp M, Foght J, Lanoil BD (2005) Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol 71:6986–6997PubMedCrossRefGoogle Scholar
  32. ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, 550 ppGoogle Scholar
  33. Tranter M, Sharp MJ, Lamb HR, Brown GH, Hubbard BP, Willis IC (2002) Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland: a new model. Hydrol Process 16:959–993CrossRefGoogle Scholar
  34. Tranter M, Skidmore M, Wadham J (2005) Hydrological controls on microbial communities in subglacial environments. Hydrol Process 19:995–998CrossRefGoogle Scholar
  35. Tscherko D, Rustemeier J, Richter A, Wanek W, Kandeler E (2003) Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur J Soil Sci 54:685–696CrossRefGoogle Scholar
  36. Vincent WF, Howard-Williams C (2001) Life on snowball Earth. Science 287:2421CrossRefGoogle Scholar
  37. Wadham JL, Hodson AJ, Tranter M, Dowdeswell JA (1998) The hydrochemistry of meltwaters draining a polythermal-based, high Arctic glacier, south Svalbard: I. The ablation season. Hydrol Process 12:1825–1849CrossRefGoogle Scholar
  38. Wadham JL, Bottrell S, Tranter M, Raiswell R (2004) Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet Sci Lett 219:341–355CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Klára Kaštovská
    • 1
    • 3
  • Marek Stibal
    • 1
    • 2
  • Marie Šabacká
    • 1
    • 2
  • Barbora Černá
    • 2
  • Hana Šantrůčková
    • 2
  • Josef Elster
    • 1
    • 2
  1. 1.Institute of BotanyAcademy of Sciences of the Czech RepublicTřeboňCzech Republic
  2. 2.Faculty of Biological SciencesUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Institute of HydrobiologyAcademy of Sciences of the Czech RepublicČeské BudějoviceCzech Republic

Personalised recommendations