Polar Biology

, Volume 30, Issue 2, pp 155–166 | Cite as

Molecular and morphological phylogenies of the Antarctic teleostean family Nototheniidae, with emphasis on the Trematominae

  • Sophie Sanchez
  • Agnès Dettaï
  • Céline Bonillo
  • Catherine Ozouf-Costaz
  • H. William DetrichIII
  • Guillaume Lecointre
Original Paper

Abstract

Four independent molecular data sets were sequenced in order to solve longstanding phylogenetic problems among Antarctic teleosts of the family Nototheniidae. The anatomical data of Balushkin (2000) were also coded into a matrix of 106 characters in order to test the parsimony of his taxonomic conclusions. Molecular results confirm Balushkin’s Pleuragrammatinae but not his Nototheniinae. Different genes used here found the “clade A” establishing the paraphyly of the Nototheniinae sensu lato; i.e. Lepidonotothen and Patagonotothen are more closely related to the Trematominae than to Notothenia. The genus Notothenia is paraphyletic and Paranotothenia should become Notothenia. Previously no molecular data set could assign a reliable position for the genus Gobionotothen. For the first time robust results are obtained for the phylogeny among the Trematominae. Trematomus scotti is the sister-group of all others, then Trematomus newnesi emerges, then Trematomus eulepidotus. Among the crown group, three clades emerge: 1: Trematomus hansoni + Trematomus bernacchii + Trematomus vicarius; 2: Trematomus pennellii + Trematomus lepidorhinus + Trematomus loennbergii; 3: Trematomus (Pagothenia) borchgrevinki + Trematomus nicolai. Pagothenia should become Trematomus to make the genus Trematomus monophyletic. The Trematomus tree found here did not match the topology obtained with Balushkin’s morphological matrix. The tree shows that the tendencies shown by some trematomines to secondarily colonize the water column are not gained through common ancestry.

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. Balushkin AV (1992) Classification, phylogenetic relationships, and origins of the families of the suborder notothenioidei (Perciforms). J Ichthyol 32:90–110Google Scholar
  3. Balushkin AV (2000) Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). J Ichthyol 40:S74–S109Google Scholar
  4. Bargelloni L, Lecointre G (1998) Four years in notothenioid systematics: a molecular perspective. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica, a biological overview. Springer-Verlag, Milano, pp 259–273Google Scholar
  5. Bargelloni L, Marcato S, Zane L, Patarnello T (2000) Mitochondrial phylogeny of notothenioids: a molecular approach to antarctic fish evolution and biogeography. Syst Biol 49:114–129CrossRefPubMedGoogle Scholar
  6. Bargelloni L, Ritchie PA, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (Suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854–886PubMedGoogle Scholar
  7. Baum BR, Ragan MA (2004) The MRP method. In: Bininda-Emonds RP (eds) Phylogenetic supertrees, Kluwer Academic publishers, Dordrecht, the Netherlands, pp 17–34Google Scholar
  8. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2002) Genbank. Nucleic Acids Res 30:17–20CrossRefPubMedGoogle Scholar
  9. Caldas C, Kim MH, McGregor A, Cain D, Aparicio S, Wiedeman LM (1998a) Isolation and characterization of a pufferfish MLL (Mixed lineage leukemia-like) gene (fMll) reveals evolutionnary conservation in vertebrate genes related to Drosophila trithorax. Oncogene 16:3233–3241CrossRefGoogle Scholar
  10. Caldas C, So CW, McGregor A, Ford AM, McDonald B, Chan LC, Wiedemann LM (1998b) Exon scrambling of MLL transcripts occur commonly and mimic partial genomic duplication of the gene. Gene 208:167–176CrossRefGoogle Scholar
  11. Chen WJ, Bonillo C, Lecointre G (1998) Phylogeny of the Channichthyidae (Notothenioidei, Teleostei) based on two mitochondrial genes. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica, a biological overview. Springer-Verlag, Milano, pp 287–298Google Scholar
  12. Chen WJ, Bonillo C, Lecointre G (2003) Reapeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26:262–288CrossRefPubMedGoogle Scholar
  13. Dettaï A, Lecointre G (2004) In search for notothenioid relatives. Antarct Sci 16:71–85CrossRefGoogle Scholar
  14. Dettaï A, Lecointre G (2005) Further support for the clades obtained by multiple molecular phylogenies in the acanthomorph bush. C R Biol 328:674–689PubMedGoogle Scholar
  15. DeWitt HH (1971) Coastal and deep-water benthic fishes of the Antarctic. In: Bushnell VC (ed) Antarctic map folio series folio 15. American Geographical Society, New York, pp 1–10Google Scholar
  16. DeWitt HH, Heemstra PC, Gon O (1990) Nototheniidae. In: Gon O, Heemstra PC (eds) Fishes of the Southern Ocean. JLB Smith Institute of Ichthyology, Grahamstown, South Africa, pp 279–331Google Scholar
  17. Eastman JT (1993) Antarctic fish biology. Academic Press, San DiegoGoogle Scholar
  18. Eastman JT, Clarke A (1998) A comparison of adaptative radiations of Antarctic fishes with those of non-Antarctic fish. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica, a biological overview. Springer-Verlag, Milano, pp 3–26Google Scholar
  19. Ekau W (1988) Ecomorphology of nototheniid fish from the Weddell Sea. Antarctica Ber Polarforsch 51:1–140Google Scholar
  20. Ekau W (1991) Morphological adaptations and mode of life in High Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic Fish. Springer-Verlag, Berlin, pp 23–39Google Scholar
  21. Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  22. Hassanin A, Lecointre G, Tillier S (1998) The “ Evolutionary Signal “ of homoplasy in protein coding gene sequences and its consequences for a priori weighting in phylogeny. C R Acad Sci 321:611–620Google Scholar
  23. Hastings PA (1993) Relationships of the fishes of the perciform suborder Notothenioidei. In: Miller A (ed) A history and atlas of the fishes of the Antarctic Ocean. Foresta Institute for Ocean and Mountain Studies, Carson City, Nevada, pp 99–107Google Scholar
  24. Iwami T (1985) Osteology and relationships of the family Channichthyidae. Mem Natl Inst Pol Res Tokyo Ser E 36:1–69Google Scholar
  25. Lecointre G, Bonillo C, Ozouf-Costaz C, Hureau JC (1997) Molecular phylogeny of the Antarctic fishes: paraphyly of the Bovichtidae and no indication for the monophyly of the Notothenioidei (Teleostei). Polar Biol 18:193–208CrossRefGoogle Scholar
  26. Lecointre G, Deleporte P (2000) Le principe du “total evidence” requiert l’exclusion de données trompeuses. Biosystema 18:129–151Google Scholar
  27. Lecointre G, Deleporte P (2005) Total evidence requires exclusion of phylogenetically misleading data. Zool Scripta 34:101–117CrossRefGoogle Scholar
  28. Lecointre G, Ozouf-Costaz C (2004) Les poissons à antigel de l’océan austral. Pour La Sci 320:48–54Google Scholar
  29. Near TJ, Pesavento JJ, Cheng CC (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Mol Phylogenet Evol 32:881–891CrossRefPubMedGoogle Scholar
  30. Philippe H, Sorhannus U, Baroin A, Perasso R, Gasse F, Adoutte A (1994) Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record. J Evol Biol 7:247–265CrossRefGoogle Scholar
  31. Ritchie PA, Bargelloni L, Meyer A, Taylor J, MacDonald JA, Lambert DM (1996) A mitochondrial phylogeny of the trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fishes. Mol Phylogenet Evol 5(2):383–390CrossRefPubMedGoogle Scholar
  32. Ritchie PA, Lavoué S, Lecointre G (1997) Molecular phylogenetics and the evolution of Antarctic notothenioid nishes. Comp Biochem Physiol 118A 4:1009–1027CrossRefGoogle Scholar
  33. Swofford D (1999) PAUP*, Phylogenetic analysis using parsimony, version 4.0b10Google Scholar
  34. Winnepenninckx B, Backeljau T, Wachter RD (1993) Extraction of high molecular weight DNA from molluscs. T I G 9:407Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sophie Sanchez
    • 1
  • Agnès Dettaï
    • 1
  • Céline Bonillo
    • 2
  • Catherine Ozouf-Costaz
    • 2
  • H. William DetrichIII
    • 3
  • Guillaume Lecointre
    • 1
  1. 1.Département Systématique et EvolutionUMR 7138 CNRS Systématique, Adaptation, Evolution, Muséum National d’Histoire NaturelleParis Cedex 05France
  2. 2.IFR 101 CNRS, Service de Systématique MoléculaireMuséum National d’Histoire NaturelleParis Cedex 05France
  3. 3.Northeastern UniversityBostonUSA

Personalised recommendations