Polar Biology

, Volume 30, Issue 1, pp 95–107

Temperature-dependent energy allocation to growth in Antarctic and boreal eelpout (Zoarcidae)

Original Paper

Abstract

Antarctic fishes display slower annual growth rates than congeneric species from temperate zones. For an analysis of growth in relation to energy turnover, body composition was analysed in two benthic fish species to establish a whole animal energy budget. The Antarctic eelpout, Pachycara brachycephalum, was maintained at 0, 2, 4 and 6°C and the boreal eelpout, Zoarces viviparus at 4, 6, 12 and 18°C. At maximum food supply the weight gain was highest for P. brachycephalum at 4°C. Routine metabolic rate in acclimated Antarctic eelpouts did not differ between temperatures, whereas in Z. viviparus maximized growth benefited from a reduction of metabolic energy demands at 12°C. The lipid content of liver declined with increasing temperature in both species. The thermal window for growth is based on food conversion efficiency and the level of metabolic energy demand and is limited according to the level of aerobic scope available between pejus temperatures.

References

  1. Andersen NG (2001) A gastric evacuation model for three predatory gadoids and implications of using pooled field data of stomach contents to estimate food rations. J Fish Biol 59(5):1198–1217CrossRefGoogle Scholar
  2. Anderson ME (1984) Zoarcidae: development and relationship. Special publications. Am Soc Ichthyol Herpetol 17:578–582Google Scholar
  3. Arntz WE, Brey T, Gallardo VA (1994) Antarctic marine zoobenthos. Oceanogr Mar Biol Annu Rev 32:241–304Google Scholar
  4. Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities. Species, structure and survival. Cambridge University Press, Cambridge, pp 3–14Google Scholar
  5. Ayala MD, Lopez-Albors O, Gil F, Garcia-Alcazar A, Abellan E, Alarcon JA, Alvarez MC, Ramirez-Zarzosa G, Moreno F (2001) Temperature effects on muscle growth in two populations (Atlantic and Mediterranean) of sea bass, Dicentrarchus labrax L. Aquaculture 202(3–4):359–370CrossRefGoogle Scholar
  6. Billerbeck JM, Schultz ET, Conover DO (2000) Adaptive variation in energy acquisition and allocation among latitudinal populations of the Atlantic silverside. Oecologia 122(2):210–219CrossRefGoogle Scholar
  7. Björnsson B, Steinarsson A (2002) The food-unlimited growth rate of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci/J Can Sci Halieut Aquat 59(3):494–502CrossRefGoogle Scholar
  8. Brett JR, Groves TD (1979) Physiological energetics. Fish Physiol 8:279–352CrossRefGoogle Scholar
  9. Brockington S (2001) The seasonal energetics of the Antarctic bivalve Laternula elliptica (King and Broderip) at Rothera point, Adelaide Island. Polar Biol 24:523–530CrossRefGoogle Scholar
  10. Brodte E (2001) Wachstum und Fruchtbarkeit der Aalmutterarten Zoarces viviparus (Linne) und Pachycara brachycephalum (Pappenheim) aus unterschiedlichen klimatischen Regionen. Diploma thesis im Fach Biologie, Universität Bremen, Fachbereich 2Google Scholar
  11. Brodte E, Knust R, Pörtner HO, Arntz WE (2006) Biology of the Antarctic eelpout Pachycara brachycephalum. Deep Sea Res II (in press)Google Scholar
  12. Brodte E, Knust R, Ulleweit J, Fonds M, Arntz WE Zoarces viviparus–aspects of growth in latitudinal and temporal scale. In preparationGoogle Scholar
  13. Brown CR, Cameron JN (1991) The relationship between specific dynamic action (SDA) and protein synthesis rates in the channel catfish. Physiol Zool 64(1):298–309Google Scholar
  14. Burchett MS (1983) Age and growth of the Antarctic fish Notothenia rossii from South Georgia. Bull Br Antarct Surv 60:45–61Google Scholar
  15. Cavalli L, Chappaz R, Bouchard P, Brun G (1997) Food availability and growth of the brook trout, Salvelinus fontinalis (Mitchill), in a French Alpine lake. Fish Manage Ecol 4(3):167–177CrossRefGoogle Scholar
  16. Clarke A (1980) A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol J Linn Soc 4(1):77–92Google Scholar
  17. Clarke A (1983) Life in cold water: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Annu Rev 21:341–453Google Scholar
  18. Clarke A, Fraser KPP (2004) Why does metabolism scale with temperature? Funct Ecol 18:234–237Google Scholar
  19. Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905CrossRefGoogle Scholar
  20. Clarke A, North AW (1991) Is growth of polar fish limited by temperature? In: Di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 54–69Google Scholar
  21. Coggan R (1997a) Growth: ration relationships in the Antarctic fish Notothenia coriiceps, Richardson, maintained under different conditions of temperature and photoperiod. J Exp Mar Biol Ecol 210(1):23–35CrossRefGoogle Scholar
  22. Coggan R (1997b) Seasonal and annual growth rates in the Antarctic fish Notothenia coriiceps Richardson. J Exp Mar Biol Ecol 213(2):215–229CrossRefGoogle Scholar
  23. Colella A, Patamia M, Galtieri A, Giardina B (2000) Cold adaptation and oxidative metabolism of Antarctic fish. Ital J Zool 67(Suppl 1):33–36CrossRefGoogle Scholar
  24. Conover DO, Brown JJ, Ehtisham A (1997) Countergradient variation in growth of young striped bass (Morone saxatilis) from different latitudes. Can J Fish Aquat Sci/J Can Sci Halieut Aquat 54(10):2401–2409CrossRefGoogle Scholar
  25. Crockett EL, Sidell BD (1990) Some pathways of energy metabolism are cold adapted in Antarctic fishes. Physiol Zool 63(3):472–488Google Scholar
  26. Cui Y, Liu J (1990) Comparison of energy budget among six teleosts–2. Metabolic rates. Comp Biochem Physiol A 97(2):169–174CrossRefGoogle Scholar
  27. Cui Y, Wootton RJ (1990) Components of the energy budget in the European minnow, Phoxinus phoxinus (L.) in relation to ration, body weight and temperature. Acta hydrobiologica sinica/Shuisheng Shengwu Xuebao. Wuhan 14(3):193–204Google Scholar
  28. von Dorrien CF (1993) Ecology and respiration of selected Arctic benthic fish species. Berichte zur Polarforschung/Reports on Polar Research 125, 104ppGoogle Scholar
  29. Elliott JM (1976) Energy losses in the waste products of brown trout (Salmo trutta L.). J Anim Ecol 45:561–580CrossRefGoogle Scholar
  30. Elliot JM, Davidson W (1975) Energy equivalents of oxygen consumption in animal energetics. Oecologia 19:195–201CrossRefGoogle Scholar
  31. Everson I (1977) The living resources of the Southern Ocean. FAO Southern Ocean Fisheries Survey Program, Rome, GLO/SO/77/1 156ppGoogle Scholar
  32. Fischer T (2003) The effects of climate induced temperature changes on cod (Gadus morhua L.): linking ecological and physiological investigations. Berichte zur Polar- und Meeresforschung 453Google Scholar
  33. Fonds M, Jaworski A, Iedema A, Puyl PVD (1989a) Metabolism, food consumption, growth and food conversion of shorthorn sculpin (Myoxocephalus scorpius) and eelpout (Zoarces viviparus). ICES Council Meeting 1989 (collected papers), ICES, Copenhagen (Denmark), G:31, 19ppGoogle Scholar
  34. Fonds M, Drinkwaard B, Resink JW, Eysink GGJ, Toet W (1989b) Measurements of metabolism, food intake and growth of Solea solea (L.) fed with mussel meat or dry food. In: DePauw N, Jaspers E, Achefors H, Wilkins N (eds) Aquaculture—a biotechnology in progress. European Aquaculture Society, BredeneGoogle Scholar
  35. Fonds M, Cronie R, Vethaak AD, van der Puyl P (1992) Metabolism, food consumption and growth of plaice (Pleuronectes platessa) and flounder (Platichthys flesus) in relation to fish size and temperature. Neth J Sea Res 29(1–3):127–143CrossRefGoogle Scholar
  36. Frederich M, Pörtner HO (2000) Oxygen limitation of thermal tolerance defined by cardiac and ventilatory performance in spider crab, Maja squinado. Am J Physiol Regul Integr Comp Physiol 279:R1531–R1538PubMedGoogle Scholar
  37. Giardina B, Mordente A, Zappacosta B, Calla C, Colacicco L, Gozzo ML, Lippa S (1998) The oxidative metabolism of Antarctic fish: some peculiar aspects of cold adaptation. In: di Prisco G, Pisano E, Clarke A (eds) Fishes of Antarctica, Springer, MilanoGoogle Scholar
  38. Gnaiger E, Bitterlich G (1984) Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept. Oecologia 62:289–298CrossRefGoogle Scholar
  39. Hansen TK, Falk-Petersen IB (2001) The influence of rearing temperature on early development and growth of spotted wolffish Anarhichas minor (Olafsen). Aquacult Res 32(5):369–378CrossRefGoogle Scholar
  40. Hardewig I, van Dijk PLM, Pörtner HO (1998) High-energy turnover at low temperatures: recovery from exhaustive exercise in Antarctic and temperate eelpouts. Am J Physiol 43:R1789–R1796Google Scholar
  41. Hardewig I, van Dijk PLM, Moyes CD, Pörtner HO (1999) Temperature-dependent expression of cytochrome-C oxidase in Antarctic and temperate fish. Am J Physiol 277:R508–R516PubMedGoogle Scholar
  42. Hochachka PW (1988) Channels and pumps-determinants of metabolic cold adaptation strategies. Comp Biochem Physiol B 90B(3):515–519CrossRefGoogle Scholar
  43. Hofmann N, Fischer P (2003) Impact of temperature on food intake and growth in juvenile burbot. J Fish Biol 63(5):1295–1305CrossRefGoogle Scholar
  44. Holeton GF (1974) Metabolic cold adaptation of polar fish: fact or artefact. Physiol Zool 47(3):137–152Google Scholar
  45. Houde ED (1989) Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish Bull 87(3):471–495Google Scholar
  46. Iedema A (1989) Metingen van groei, voedselopname en zuurstofconsumptie an de puitaal, Zoarces viviparus (Linne) ed. Stageverslag voor studie biologie aan de Rijkssuniversiteit GroningenGoogle Scholar
  47. Jobling M (1986) Gastrointestinal overload – a problem with formulated feeds? Aquaculture 51:257–263CrossRefGoogle Scholar
  48. Jobling M (1987) Growth of Arctic charr (Salvelinus alpinus L.) under conidtion of constant light and temperature. Aquaculture 60:243–249CrossRefGoogle Scholar
  49. Jobling M (1994) Fish bioenergetics. Chapman & Hall, New YorkGoogle Scholar
  50. Johnston IA, Battram J (1993) Feeding energetics and metabolism in demersal fish species from Antarctic, temperate and tropical environments. Mar Biol 115(1):7–14CrossRefGoogle Scholar
  51. Jonsson N, Jonsson B (1998) Body composition and energy allocation in life-history stages of brown trout. J Fish Biol 53:1306–1316CrossRefGoogle Scholar
  52. Kawall HG, Somero GN (1996) Temperature compensation of enzymatic activities in brain of Antarctic fishes: evidence for metabolic cold adaptation. Antarctic J US 31(2):115–117Google Scholar
  53. Kooijman SALM (2000) Dynamic energy and mass budgets in biological systems. University Press, CambridgeGoogle Scholar
  54. Koskela J, Pirhonen J, Jobling M (1997) Effect of low temperature on feed intake, growth rate and body composition of juvenile Baltic salmon. Aquacult Int 5(6):479–488CrossRefGoogle Scholar
  55. La Mesa M, Vacchi M (2001) Age and growth of high Antarctic notothenioid fish. Antarctic Sci 13(3):227–235CrossRefGoogle Scholar
  56. Lannig G, Storch D, Pörtner HO (2005) Aerobic mitochondrial capacities in Antarctic and temperate eelpout (Zoarcidae) subjected to warm versus cold acclimation. Polar Biol 28:575–584CrossRefGoogle Scholar
  57. Lyytikaeinen T, Koskela J, Rissanen I (1997) The influence of temperature on growth and proximate body composition of under yearling Lake Inari arctic char (Salvelinus alpinus) (L.)). J Appl Ichthyol/Z Angew Ichthyol 13(4):191–194Google Scholar
  58. Mark FC, Bock C, Pörtner HO (2002) Oxygen limited thermal tolerance in Antarctic fish investigated by magnetic resonance imaging (MRI) and spectroscopy (31P-MRS). Am J Physiol Regul Integr Comp Physiol 283:R1254–R1262PubMedGoogle Scholar
  59. Mark FC, Hirse T, Pörtner H-O (2005) Thermal sensitivity of cellular energy budgets in Antarctic fish hepatocytes. Polar Biol 28:805–814CrossRefGoogle Scholar
  60. Morales-Nin B, Moranta J, Balguerias E (2000) Growth and age validation in high-Antarctic fish. Polar Biol 23:626–634CrossRefGoogle Scholar
  61. Nicieza AG, Reyes-Gavilan FG, Brana F (1994) Differentiation in juvenile growth and bimodality patterns between northern and southern populations of Atlantic salmon (Salmo salar L.). Can J Zool/Revue Can Zool 72(9):1603–1610CrossRefGoogle Scholar
  62. North AW (1998) Growth of young fish during winter and summer at South Georgia. Polar Biol 19:198–205CrossRefGoogle Scholar
  63. Otterlei E, Folkvord A, Nyhammer G (2000) Temperature dependent otolith growth of larval and early juvenile Atlantic cod (Gadus morhua). Temperature- and Size-Dependent growth of larval and early Juvenile Atlantic Cod (Gadus morhua L.). Department of Fisheries and Marine Biology, University of BergenGoogle Scholar
  64. Pauly D (1979) Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy’s growth formula. Ber Inst Meereskd Christian-Albrecht-Univ Kiel 63:156pGoogle Scholar
  65. Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40CrossRefGoogle Scholar
  66. Peck L, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia, vol 177. Geological Society, Special Publications, London, pp 441–450Google Scholar
  67. Pitcher TJ, Hart PJB (1982) Fisheries ecology. Croom Helm, London & CanberraGoogle Scholar
  68. Pörtner HO (2002) Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. J Exp Biol 205(15):2217–2230PubMedGoogle Scholar
  69. Pörtner HO, Hardewig I, Sartoris FJ, van Dijk PLM (1998) Acid-based balance, ion regulation and energetics in the cold. In: Pörtner HO, Playle RC (eds) Cold ocean physiology, University Press, CambridgeGoogle Scholar
  70. Pörtner HO, Berdal B, Blust R, Brix O, Colosimo A, de Wachter B, Giuliani A, Johansen T, Fischer T, Knust R, Lannig G, Naevdal G, Nedenes A, Nyhammer G, Sartoris FJ, Serendero I, Sirabella P, Thorkildsen S, Zakhartsev M (2001) Climate induced temperature effects on growth performance, fecundity and recruitment in marine fish: developing a hypothesis for cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout (Zoarces viviparus). Cont Shelf Res 21:1975–1997CrossRefGoogle Scholar
  71. Pörtner HO, Lucassen M, Storch D (2005) Metabolic biochemistry, an integrative view. In: Steffensen JF, Farrell AP (eds) The Physiology of Polar Fishes, vol 22. Fish Physiology, Academic, OxfordGoogle Scholar
  72. Purchase CF, Brown JA (2000) Interpopulation differences in growth rates and food conversion efficiencies of young Grand Banks and Gulf of Maine Atlantic cod (Gadus morhua). Can J Fish Aquat Sci/J Can Sci Halieut Aquat 57(11):2223–2229CrossRefGoogle Scholar
  73. Radtke RL, Hourigan TF (1990) Age and growth of the Antarctic fish Nototheniops nudifrons. Fish Bull 88(3):557–571Google Scholar
  74. Radtke RL, Targett TE, Kellermann A, Bell J, Hill KT (1989) Antarctic fish growth: profile of Trematomus newnesi. Mar Ecol Prog Ser 57(2):103–117Google Scholar
  75. Ricker WE (1975) Computations and interpretations of biological statistics of fish populations. Bull Res Board Can 191:1–382Google Scholar
  76. Rosas C, Martinez E, Gaxiola G, Brito R, Sanchez A, Soto LA (1999) The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. J Exp Mar Biol Ecol 234(1):41–57CrossRefGoogle Scholar
  77. Scofiani NM, Hawkins AD (1985) Field studies of energy budgets. In: Scofiani NM, Hawkins AD, Tytler P, Calow P (eds) Fish energetics: new perspectives, Croom Helm, LondonGoogle Scholar
  78. Steffensen JF (2002) Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact! Comp Biochem Physiol A 132:789–795CrossRefGoogle Scholar
  79. Storch D, Lannig G, Pörtner H-O (2005) Temperature dependent protein synthesis capacities in stenothermal (Antarctic) and eurythermal (North Sea) fish (Zoarcidae). J Exp Biol 208:2409–2420PubMedCrossRefGoogle Scholar
  80. Torres JJ, Somero GN (1988) Vertical distribution and metabolism in Antarctic mesopelagic fishes. Comp Biochem Physiol B 90B(3):521–528CrossRefGoogle Scholar
  81. Ulleweit J (1995) Zur Ökologie zweier Standfischarten, der Aalmutter (Zoarces viviparus, L.) und des Butterfisches (Pholis gunnellus, L.) aus dem Niedersächsischen Wattenmeer. Diploma thesis, Fachbereich 2, Biologie/Chemie, Universität BremenGoogle Scholar
  82. Van Dijk PLM, Tesch C, Hardewig I, Pörtner HO (1999) Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J Exp Biol 202(24):3611–3621PubMedGoogle Scholar
  83. Walker TR (2005) Vertical organic inputs and bio-availability of carbon in an Antarctic coastal sediment. Pol Polar Res 26:91–106Google Scholar
  84. Wieser W (1986) Bioenergetik. Georg Thieme Verlag, Stuttgart, New YorkGoogle Scholar
  85. Zakhartsev MV, de Wachter B, Sartoris FJ, Pörtner H-O, Blust R (2003) Thermal physiology of the common eelpout (Zoarces viviparus). J Comp Physiol B Biochem, Syst, Environ Physiol 173:365–378CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Alfred–Wegener-Institute for Polar- and Marine Research, Physiology of Marine AnimalsBremerhavenGermany

Personalised recommendations