Advertisement

Polar Biology

, Volume 29, Issue 11, pp 936–949 | Cite as

The biodiversity and biogeography of the free-living nematode genera Desmodora and Desmodorella (family Desmodoridae) at both sides of the Scotia Arc

  • J. Ingels
  • S. Vanhove
  • I. De Mesel
  • A. Vanreusel
Original Paper

Abstract

Samples taken at two stations in the northern and southern parts of the Scotia Arc, at depths of 277 and 307 m, respectively, were analysed for metazoan meiofauna with special attention to the nematodes. Identification to species level was performed for two closely related subdominant nematode genera (Desmodora and Desmodorella) in samples from the two Scotia Arc stations and in other available samples from adjacent areas (Magellan Region, Drake Passage, Weddell Sea). Seven Desmodora species and three Desmodorella species were found, of which, respectively five and two species are new to science. The Scotia Arc stations show relatively high densities and average diversity on meiofauna and nematode level compared to adjacent areas. The distribution patterns of the various Desmodora and Desmodorella species suggest the Scotia Arc as a shallow bridge and a possible exchange route for meiofauna between the Antarctic and South America, especially since these species seem to be constrained by water depth.

Keywords

Southern Ocean Meiofauna Antarctic Circumpolar Current Drake Passage Latin AMerican 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are very much indebted to the Alfred-Wegener Institute for Polar and Marine Research and the captain and crew members of the RV Polarstern for their expertise and professionalism. We would like to thank Dr. W. Bonne and Dr. R. Herman for their sampling efforts during the LAMPOS-campaign, Drs. S. Derycke for molecular work and results, and Prof. Dr. M. Vincx for the use of research facilities. This research was performed during the M.Sc. course Marelac at the University of Ghent and under the auspices of the Scientific Research Program on Antarctica from the Belgian Science Policy (BIANZO) and the concerted actions of Ghent University (GOA).

References

  1. Angel MV, Fasham MJR (1983) Eddies and biological processes. In: Robinson AR (ed.) Eddies in marine science. 1983 series: Topics in atmospheric and oceanographic sciences. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Arntz WE, Brey T (2003) The expedition ANTARKTIS XIX/5 (LAMPOS) of RV “Polarstern” in 2002. Berichte zur Polar- und Meeresforschung 462Google Scholar
  3. Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Ocean Mar Biol: Ann Rev 32:241–304Google Scholar
  4. Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Batagli B, Valencia J, Walton DHW (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 3–14Google Scholar
  5. Barker PF (2001) Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth Sci Rev 55(1, 2):1–39CrossRefGoogle Scholar
  6. Barker PF, Burrell J (1982) The influence upon Southern Ocean circulation, sedimentation, and climate of the opening of the Drake Passage. In: Craddock C (ed) Antarctic geoscience, University of Wisconsin Press, Madison, pp 377–385Google Scholar
  7. Barron GL (1977) The nematode-destroying fungi. Topics in mycobiology: 1. Canadian Biological Publications, GuelphGoogle Scholar
  8. Bathman U, Fischer G, Muller PJ, Gerdes D (1991) Short-term variations in particulate matter sedimentation off Kapp Norvegia, Weddell Sea, Antarctica: relation to water mass advection, ice cover, plankton biomass and feeding activity. Polar Biol 11:185–195Google Scholar
  9. von Bodungen B, Smetacek VS, Tilzer MM, Zeitzschel B (1986) Primary production and sedimentation during spring in the Antarctic Peninsula region. Deep Sea Res Pt I 33:177–194CrossRefGoogle Scholar
  10. Brey T, Klages M, Dahm C, Gorny M, Gutt J, Hain S, Stiller M, Arntz WE (1994) Antarctic benthic diversity. Nature 368:297CrossRefGoogle Scholar
  11. Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarctic Sci 8(1):3–6Google Scholar
  12. von Bröckel K (1985) Primary production data from the south-eastern Weddell Sea. Polar Biol 4:75–80CrossRefGoogle Scholar
  13. Bussau C (1993) Taxonomische und ökologische Untersuchungen an Nematoden des Peru-Beckens. PhD thesis, University Kiel, KielGoogle Scholar
  14. Chen G (1999) Ecology and systematics of the meiofauna and nematode communities in the Strait of Magellan and the Beagle Channel (Chile). PhD thesis, Ghent University, BelgiumGoogle Scholar
  15. Clarke A, Crame JA (1992) The Southern Ocean Benthic fauna and climate change—a historical perspective. Philos T Roy Soc B 1285:299–309Google Scholar
  16. Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Ocean Mar Biol: Ann Rev 41:47–114Google Scholar
  17. Clarke A, Barnes DKA, Hodgson DA (2005) How isolated is Antarctica? Trends Ecol Evol 20(1):1–3PubMedCrossRefGoogle Scholar
  18. Clasing E (1980) Postembryonic Development in Species of Desmodoridae, Epsilonematidae and Draconematidae. Zool Anz 204(5, 6):337–344Google Scholar
  19. Cobb NA (1917) Notes on nemas. Contrib Sci Nematol 5:117–128Google Scholar
  20. Commito JA, Tita G (2002) Differential dispersal rates in an intertidal meiofauna assemblage. J Exp Mar Biol Ecol 268:237–256CrossRefGoogle Scholar
  21. Coull BC (1988) Ecology of the marine meiofauna. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian Institution Press, London, pp 18–38Google Scholar
  22. Crame JA (1999) An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci Mar 63(Suppl 1):1–14Google Scholar
  23. De Mesel I, Lee HJ, Vanhove S, Vincx M, Vanreusel A (2006) Species diversity and distribution within the deep-sea nematode genus Acantholaimus on the continental shelf and slope in Antarctica. Polar Biol (in press)Google Scholar
  24. Deprez T, et al (2005) NeMys. World Wide Web electronic publication. http://www.nemys.ugent.be, version (10/2005)
  25. Figueiras FG, Estrada M, López O, Arbones B (1998) Photosynthetic parameters and primary production in the Bransfield Strait: relationships with mesoscale hydrographic structures. J Mar Syst 17:129–141CrossRefGoogle Scholar
  26. Fonseca G, Vanreusel A, Decraemer W (2006) Taxonomy and biogeography of Molgolaimus Ditlevsen, 1921 (Nematoda: Chromadoria) with reference to the origins of deep-sea nematodes. Ant Sci (in press)Google Scholar
  27. Heip C, Vincx M, Smol N, Vranken G (1982) The systematics and ecology of free-living marine nematodes. Helminthol Abs Ser B, Plant Nematol 51(1):1–31Google Scholar
  28. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Ocean Mar Biol: Ann Rev 23:399–489Google Scholar
  29. Heip C, Herman P, Soetaert K (1998) Indices of diversity and evenness. Océanis 24(4):61–87Google Scholar
  30. Herman RL, Dahms HU (1992) Meiofauna communities along a depth transect off Halley Bay (Weddell Sea Antarctica). Polar Biol 12:313–320CrossRefGoogle Scholar
  31. Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, LondonGoogle Scholar
  32. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432CrossRefGoogle Scholar
  33. Jensen P (1978) Revision of Microlaimidae, erection of Molgolaimidae fam.n., and remarks on the systematic position of Paramicrolaimus (Nematoda, Desmodorida). Zool Scr 7:159–173CrossRefGoogle Scholar
  34. Jensen P (1988) Nematode assemblages in the deep-sea benthos of the Norwegian Sea. Deep-Sea Res Pt I 35(7):1173–1184CrossRefGoogle Scholar
  35. Knox GA (1994) The biology of the Southern Ocean. Studies in polar research. Cambridge University Press, CambridgeGoogle Scholar
  36. Korb RE, Whitehouse M (2004) Contrasting primary production regimes around South Georgia, Southern Ocean: large blooms versus high nutrient, low chlorophyll waters. Deep-sea Res Pt I 51:721–738CrossRefGoogle Scholar
  37. Lambshead PJD (1993) Recent developments in marine benthic biodiversity research. Océanis 19(6):5–24Google Scholar
  38. Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr Palaeoclimatol Palaeoecol 198(1–2):11–37CrossRefGoogle Scholar
  39. Luyten C (1999) Meiofauna van Antarctica: structurele en trofische aspecten. Licentiate thesis, Ghent UniversityGoogle Scholar
  40. Manachini B (1997) Biodiversity of Nematoda assemblages in the Antarctic sea bed. MSc thesis, Ghent UniversityGoogle Scholar
  41. Palmer MA (1990) Understanding the movement dynamics of a stream-dwelling meiofauna community using marine analogs. Stygologia 5(2):67–74Google Scholar
  42. Pastor de Ward CT (1988) Nematodes Marinos de la Ría Deseado (Desmodoroidea): Desmodoridae, Draconematidae), Santa Cruz, Argentina. VII. Physis (Buenos Aires), Seccion. A. 46:61–72Google Scholar
  43. Platt HM, Warwick RM (1998) Freeliving marine nematodes. Part II Chromadorids. Synopses of the British Fauna (New Series) 53. The Linnean Society and The Estuarine and Coastal Sciences Association, LondonGoogle Scholar
  44. Soetaert K, Heip C (1990) Sample-size dependence of diversity indices and the determination of sufficient sample size in a high-diversity deep-sea environment. Mar Ecol Prog Ser 59:305–307Google Scholar
  45. Soetaert K, Heip C (1995) Nematode assemblages of deep-sea and shelf break sites in the North Atlantic and Mediterranean Sea. Mar Ecol Prog Ser 125:171–183Google Scholar
  46. Soltwedel T (2000) Metazoan meiobenthos along continental margins: a review. Prog Oceanogr 46:59–84CrossRefGoogle Scholar
  47. Thomson MRA (2004) Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep-Sea Res 51(Pt II):1467–1487Google Scholar
  48. Tita G, Vincx M, Desrosiers G (1999) Size spectra, body with and morphotypes of intertidal nematodes: an ecological interpretation. J Mar Biol Assoc UK 79:1007–1015CrossRefGoogle Scholar
  49. Ullberg J, Ólafsson E (2003) Free-living marine nematodes actively choose habitat when descending from the water column. Mar Ecol Prog Ser, 260:141–149Google Scholar
  50. Vanaverbeke J, Soetaert K, Heip C, Vanreusel A (1997) The metazoan meiobenthos along the continental slope of the Goban Spur (NE Atlantic). J Sea Res 38:93–107CrossRefGoogle Scholar
  51. Vanhove S (1997) Antarctic sublittoral meiofauna: focus on the ecology of free-living marine nematodes. PhD thesis, Ghent University, BelgiumGoogle Scholar
  52. Vanhove S, Wittoeck J, Desmet G, Van den Berghe B, Herman RL, Bak RPM, Nieuwland G, Vosjan JH, Boldrin A, Rabitti S, Vincx M (1995) Deep-sea meiofauna communities in Antarctica: structural analysis and relation with the environment. Mar Ecol Prog Ser 127:65–76Google Scholar
  53. Vanhove S, Lee HJ, Beghyn M, Van Gansbeke D, Brockington S, Vincx M (1998) The metazoan meiofauna in its biogeochemical environment: the case of an Antarctic coastal sediment. J Mar Biol Assoc UK 78:411–434Google Scholar
  54. Vanhove S, Arntz W, Vincx M (1999) Comparative study of the nematode communities on the southeastern Weddell Sea shelf and slope (Antarctica). Mar Ecol Prog Ser 181:237–256Google Scholar
  55. Vanhove S, Beghyn M, Van Gansbeke D, Bullough LW, Vincx M (2000) A seasonally varying biotope at Signy Island, Antarctic: implications for meiofauna structure. Mar Ecol Prog Ser 202:13–25Google Scholar
  56. Vanhove S, Vermeeren H, Vanreusel A (2004) Meiofauna towards the deep South Sandwich Trench (750–6300 m). Deep-Sea Res Pt II 51:1665–1687CrossRefGoogle Scholar
  57. Vanreusel A, Vincx M, Van Gansbeke D, Gijselinck W (1992) Structural analysis of the meiobenthos communities of the shelf break area in two stations of the gulf of Biscay (N.E. Atlantic). Belg J Zool 122(2):185–202Google Scholar
  58. Vermeeren H (2002) Biogeografie van Antarctische diepzeenematoden: species turn-over in dominante genera van de familie Chromadoridae. Licentiate thesis, Ghent University, BelgiumGoogle Scholar
  59. Vermeeren H, Vanreusel A, Vanhove S (2004) Species distribution within the free-living marine nematode genus Dichromadora in the Weddell Sea and adjacent areas. Deep-Sea Res Pt II 51:1643–1664CrossRefGoogle Scholar
  60. Verschelde D, Gourbault N, Vincx M (1998) Revision of Desmodora with descriptions of new desmodorids (Nematoda) from hydrothermal vents of the pacific. J Mar Biol Assoc UK 78:75–112CrossRefGoogle Scholar
  61. Vincx M (1996) Meiofauna in marine and fresh water sediments. In: Hall GS (ed) Methods for the examination of organismal diversity in soils and sediments. IUBS Series of Methodology Handbooks, CAB International, University Press, Cambridge, pp 214–248Google Scholar
  62. Wenthworth CK (1922) The Wenthworth scale of grain size for sediments. J Geol 30:381Google Scholar
  63. Wieser W (1959) The effect of the grain size in the distribution of small invertebrates inhabiting the Beaches of Puget Sound. Limnol Oceanogr 4:181–194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. Ingels
    • 1
  • S. Vanhove
    • 1
  • I. De Mesel
    • 1
  • A. Vanreusel
    • 1
  1. 1.Marine Biology Section, Biology DepartmentGhent UniversityGhentBelgium

Personalised recommendations