Polar Biology

, Volume 29, Issue 6, pp 476–486

Temperature and light requirements for growth of two diatom species (Bacillariophyceae) isolated from an Arctic macroalga

  • Ulf Karsten
  • Rhena Schumann
  • Susanne Rothe
  • Ines Jung
  • Linda Medlin
Original Paper


In the present study, two abundant epiphytic diatom taxa were isolated from the assimilation hairs of the brown macroalga Chordaria flagelliformis collected in the Arctic Kongsfjorden (Spitsbergen, Norway), established as unialgal cultures and their growth rates determined under controlled photon fluence rate and temperature conditions. Using morphological (light and scanning electron microscopy) and SSU rRNA gene data both isolates (ROS D99 and ROS D125) were identified as members of a Fragilaria–Synedropsis clade. The molecular data of ROS D99 and ROS D125 were not identical to any other published sequence. While ROS D99 has been identified as Fragilaria barbararum mainly due to the SEM characteristics, ROS D125 could not be definitely identified although morphological data speak for Fragilaria striatula. Both diatom species showed similar growth rates at all temperatures and photon fluence rates tested. They grew well between 0 and 15°C with optimum temperatures of 12–14°C, but did not survive 20°C. Therefore, compared to Antarctic diatoms both taxa from Kongsfjorden can be characterised as eurythermal organisms. Increasing photon fluence rates between 2 and 15 μmol m−2 s−1 were accompanied with an almost twofold increase in growth rates, but photon fluence rates >15 μmol m−2 s−1 did not further enhance growth pointing to low light requirements. From these data optimum, minimum and maximum photon fluence rates and temperatures for growth can be assessed indicating that both diatoms are well acclimated to the fluctuating environmental conditions in the Arctic habitat.


  1. Barron JA (1993) Diatoms. In: Lipps JE (ed) Fossil prokaryotes and protists. Blackwell Scientific Publishers, Boston, pp 155–167Google Scholar
  2. Blanchard GF, Guarini JM, Richard P, Gros P, Mornet F (1996) Quantifying the short-term temperature effect on light-saturated photosynthesis of intertidal microphytobenthos. Mar Ecol Prog Ser 134:309–313CrossRefGoogle Scholar
  3. Brush MJ, Nixon SW (2002) Direct measurements of light attenuation by epiphytes on eelgrass Zostera marina. Mar Ecol Prog Ser 238:73–79CrossRefGoogle Scholar
  4. Cahoon LB (1999) The role of benthic microalgae in neritic ecosystems. Oceanogr Mar Biol Annu Rev 37:47–86Google Scholar
  5. Elwood HJ, Olson GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonichia putalata. Mol Biol Evol 2:399–410PubMedGoogle Scholar
  6. Filatov DA (2002) ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Mol Ecol Notes 2:621–624CrossRefGoogle Scholar
  7. Fong CW, Lee SY, Wu RSS (2000) The effects of epiphytic algae and their grazers on the intertidal seagrass Zostera japonica. Aquat Bot 67:251–261CrossRefGoogle Scholar
  8. Glud RN, Kühl M, Wenzhöfer F, Rysgaard S (2002) Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production. Mar Ecol Prog Ser 238:15–29CrossRefGoogle Scholar
  9. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239PubMedCrossRefGoogle Scholar
  10. Hanelt D, Tüg H, Bischof K, Groß C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658CrossRefGoogle Scholar
  11. Hasle GR, Medlin LK, Syvertsen EE (1994) Synedropsis gen. nov., a sea ice associated araphid diatom genus. Phycologia 33:248–270Google Scholar
  12. Higgins D, Salemi M (2003). Multiple alignment—practice. In: Salemi M, Vandamme AM (eds) The phylogenetic handbook. Cambridge University Press, Cambridge, pp 61–71Google Scholar
  13. Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne JO, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Pol Res 21:167–208CrossRefGoogle Scholar
  14. Jerlov NG (1976) Marine optics. Elsevier, AmsterdamCrossRefGoogle Scholar
  15. Karsten U, Klimant I, Holst G (1996) A new fluorimetric technique to measure growth of adhering phototrophic microorganisms. Appl Environ Microbiol 62:237–243PubMedGoogle Scholar
  16. Longhi ML, Schloss IR, Wiencke C (2003) Effect of irradiance and temperature on photosynthesis and growth of two Antarctic benthic diatoms, Gyrosigma subsalinum and Odontella litigiosa. Bot Mar 46:276–284CrossRefGoogle Scholar
  17. Main SP, McIntire CD (1974) The distribution of epiphytic diatoms in Yaquina Estuary, Oregon (USA). Bot Mar 17:88–99CrossRefGoogle Scholar
  18. Medlin LK, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499CrossRefPubMedGoogle Scholar
  19. Medlin LK, Kooistra WHC, Schmid AMM (2000) A review of the evolution of the diatoms—a total approach using molecules, morphology and geology. In: Witkowski A, Sieminska J (eds) The origin and early evolution of the diatoms: fossil, molecular and biogeographical approaches. W. Szafer Institute of Botany, Polish Academy of Sciences, Cracow, pp 13–35Google Scholar
  20. Metzeltin D, Witkowski A (1996) Diatomeen der Bären-Insel. In: Lange-Bertalot H (ed) Iconographia diatomologica, vol 4. Koeltz Scientific Books, Königstein, 286 ppGoogle Scholar
  21. Mock T, Gradinger R (1999) Determination of Arctic ice algae production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26CrossRefGoogle Scholar
  22. Pillsbury RW, Lowe RL (1999) The response of benthic algae to manipulations of light in four acidic lakes in northern Michigan. Hydrobiologia 394:69–81CrossRefGoogle Scholar
  23. Pollard PC, Kogure K (1993) The role of epiphytic and epibenthic algae on the primary production of a tropical seagrass bed. Aust J Mar Fresh Res 44:141–154Google Scholar
  24. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  25. Poulin M (1990) Sea ice diatoms (Bacillariophyceae) of the Canadian Arctic. The genus Stenoneis. J Phycol 26:156–167CrossRefGoogle Scholar
  26. Poulin M (1993) Craspedopleura (Bacillariophyta), a new diatom genus of arctic sea ice assemblages. Phycologia 32:223–233Google Scholar
  27. Poulin M, Berard-Therriault L, Cardinal A (1986) Fragilaria and Synedra (Bacillario-phyceae): a morphological and ultrastructural approach. Diatom Res 1:99–112Google Scholar
  28. Ramm G (1977) Structure of epiphytic diatom populations of the phytal of the Kiel Bight (western Baltic). Nova Hed 54:379–387Google Scholar
  29. Rivkin RB, Putt M (1987) Photosynthesis and cell division by Antarctic microalgae: comparison of benthic, planktonic and ice algae. J Phycol 23:223–229CrossRefGoogle Scholar
  30. Round FE (1971) Benthic marine diatoms. Oceanogr Mar Biol Annu Rev 9:83–139Google Scholar
  31. Snoeijs P (1993) Intercalibration and distribution of diatom species in the Baltic Sea, vol 1. Opulus press, Uppsala, SwedenGoogle Scholar
  32. Snoeijs P (1995) Effects of salinity on epiphytic diatom communities on Pilayella littoralis (Phaeophyceae) in the Baltic Sea. Ecoscience 2:382–394Google Scholar
  33. Sokal PR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New YorkGoogle Scholar
  34. Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbaek JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther JG, Dallmann W (2002) The physical environment of Kongsfjorden–Krossfjorden, an Arctic fiord system in Svalbard. Pol Res 21:167–208CrossRefGoogle Scholar
  35. Swofford DL (2002) PAUP*, phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  36. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  37. Underwood GJC, Kromkamp J (1999) Primary production by phytoplankton and microphytobenthos in estuaries. Adv Ecol Res 29:93–153CrossRefGoogle Scholar
  38. Wiencke C, Bartsch I, Bischoff B, Peters AF, Breemann AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259CrossRefGoogle Scholar
  39. Wiencke C, Vögele B, Kovaltchouk NA, Hop H (2004) Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalbard. Rep Pol Mar Res 492:55–62Google Scholar
  40. Witkowski A, Lange-Bertalot H, Metzeltin D (2000) Diatom flora of marine coasts. In: Lange-Bertalot H (ed) Iconographia diatomologica, vol 7. Koeltz Scientific Books, Königstein, 925 ppGoogle Scholar
  41. Wlodarska-Kowalczuk M, Wesawski JM, Kotwicki L (1998) Spitzbergen glacial bays macrobenthos—a comparative study. Pol Biol 20:66–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Ulf Karsten
    • 1
  • Rhena Schumann
    • 1
  • Susanne Rothe
    • 1
  • Ines Jung
    • 2
  • Linda Medlin
    • 2
  1. 1.Institute of Biological Sciences, Applied EcologyUniversity of RostockRostockGermany
  2. 2.Alfred-Wegener-Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations