Advertisement

Polar Biology

, Volume 29, Issue 1, pp 44–52 | Cite as

Physiological state of phytoplankton communities in the Southwest Atlantic sector of the Southern Ocean, as measured by fast repetition rate fluorometry

  • Claire L. HoletonEmail author
  • Florence Nédélec
  • Richard Sanders
  • Louise Brown
  • C. Mark Moore
  • David P. Stevens
  • Karen J. Heywood
  • Peter J. Statham
  • Cathy H. Lucas
Original Paper

Abstract

The majority of the Southern Ocean is a high-nutrient low-chlorophyll (HNLC) ecosystem. Localized increases in chlorophyll concentration measured in the wake of bathymetric features near South Georgia demonstrate variations in the factors governing the HNLC condition. We explore the possibility that the contrast between these areas of high-chlorophyll and surrounding HNLC areas is associated with variations in phytoplankton photophysiology. Total dissolvable iron concentrations, phytoplankton photophysiology and community structure were investigated in late April 2003 on a transect along the North Scotia Ridge (53–54°S) between the Falkland Islands and South Georgia (58–33°W). Total dissolvable iron concentrations suggested a benthic source of iron near South Georgia. Bulk community measurements of dark-adapted photochemical quantum efficiency (F v/F m) exhibited a sharp increase to the east of 46°W coincident with a decrease in the functional absorption cross-section (σPSII). Phytoplankton populations east of 46°W thus displayed no physiological symptoms of iron or nitrate stress. Contrasting low F v/F m west of 46°W could not be explained by variations in the macronutrients nitrate and silicic acid and may be the result of taxon specific variability in photophysiology or iron stress. We hypothesize that increased F v/F m resulted from local relief from iron-stress near South Georgia, east of Aurora Bank, an area previously speculated to be a “pulse point” source of iron. Our measurements provide one of the first direct physiological confirmations that iron stress is alleviated in phytoplankton populations near South Georgia.

Keywords

Phytoplankton High Performance Liquid Chromatography Southern Ocean Silicic Acid Antarctic Circumpolar Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Our thanks to Inga Smith, Louise Sime and Mike Meredith for their assistance in supplying and interpreting data. We also thank the officers and crew of the RRS James Clark Ross for their help and hard work during JR80. This work was supported by the University of Southampton and by the NERC AFI programme through grant number NER/G/S/2001/00006. We would like to thank Stephanie Henson and two anonymous reviewers for their comments and suggestions on earlier versions of the manuscript.

References

  1. Barlow RG, Mantoura R, Gough MA, Fileman TW (1993) Pigment signatures of the phytoplankton composition in the northeastern Atlantic during the 1990 spring bloom. Deep-Sea Res II—Top Stud Oceanogr 40:459–477CrossRefGoogle Scholar
  2. Behrenfeld MJ, Bale A, Kolber Z, Aiken J, Falkowski P (1996) Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508–511CrossRefGoogle Scholar
  3. Blain S, Treguer P, Belviso S, Bucciarelli E, Denis M, Desabre S, Fiala M, Jezequel VM, Le Fevre J, Mayzaud P, Marty JC, Razouls S (2001) A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep-Sea Res I—Oceanogr Res Pap 48:163–187CrossRefGoogle Scholar
  4. Boyd PW (2002) Environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol 38:844–861CrossRefGoogle Scholar
  5. Boyd PW, Abraham ER (2001) Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep-Sea Res II—Top Stud Oceanogr 48:2529–2550CrossRefGoogle Scholar
  6. Boyd PW, Watson AJ, Law CS, Abraham ER, Trull T, Murdoch R, Bakker D, Bowie AR, Buesseler KO, Chang H, Charette M, Croot P, Downing K, Frew R, Gall M, Hadfield M, Hall J, Harvey M, Jameson G, LaRoche (2000) A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695–702CrossRefPubMedGoogle Scholar
  7. Coale KH, Johnson KS, Chavez FP, Buesseler KO, Barber RT, Brzezinski MA, Cochlan WP, Millero FJ, Falkowski PG, Bauer JE, Wanninkhof RH, Kudela RM, Altabet MA, Hales BE, Takahashi T, Landry MR, Bidigare RR, Wang X, Chase Z, Strutton PG, Friederich GE, Gorbunov MY, Lance VP, Hilting AK, Hiscock MR, Demarest M, Hiscock WT, Sullivan KF, Tanner SJ, Gordon RM, Hunter CN, Elrod VA, Fitzwater SE, Jones JL, Tozzi S, Koblizek M, Roberts AE, Herndon J, Brewster J, Ladizinsky N, Smith G, Cooper D, Timothy D, Brown SL, Selph KE, Sheridan CC, Twining BS, Johnson ZI (2004) Southern Ocean iron enrichment experiment: carbon cycling in high- and low-Si waters. Science 304:408–414CrossRefPubMedGoogle Scholar
  8. Comiso JC, McClain CR, Sullivan CW, Ryan JP, Leonard CL (1993) Coastal zone color scanner pigment concentrations in the Southern Ocean and relationships to geophysical surface features. J Geophys Res—Oceans 98:2419–2451CrossRefGoogle Scholar
  9. Cooper DJ, Watson AJ, Nightingale PD (1996) Large decrease in ocean-surface CO2 fugacity in response to in situ iron fertisation. Nature 383:511–513CrossRefGoogle Scholar
  10. De Baar HJW, Buma AGJ, Nolting RF, Cadee GC, Jacques G, Treguer PJ (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar Ecol Prog Ser 65:105–122CrossRefGoogle Scholar
  11. Dubinsky Z (1992) The functional and optical absorption cross sections of phytoplankton photosynthesis. In: Falkowski P, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York, pp 31–45Google Scholar
  12. Frost B (1991) The role of grazing in nutrient-rich areas of the open ocean. Limnol Oceanogr 36:1616–1630Google Scholar
  13. Geider R, LaRoche J (1994) The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary production in the sea. Photosynth Res 39:275–301CrossRefGoogle Scholar
  14. Gervais F, Riebesell U, Gorbunov MY (2002) Changes in primary productivity and chlorophyll a in response to iron fertilization in the Southern Polar Frontal Zone. Limnol Oceanogr 47:1324–1335Google Scholar
  15. Gill AE (1981) Atmosphere–ocean dynamics. Academic, New York, 662ppGoogle Scholar
  16. Gordon AL, Georgi DT, Taylor HW (1977) Antarctic Polar Front Zone in the Western Scotia Sea—summer 1975. J Phys Oceanogr 7:309–328CrossRefGoogle Scholar
  17. Greene RM, Geider RJ, Falkowski PG (1991) Effect of iron limitation on photosynthesis in a marine diatom. Limnol Oceanogr 36:1772–1782Google Scholar
  18. Holm-Hansen O, Naganobu M, Kawaguchi S, Kameda T, Krasovski I, Tchernyshkov P, Priddle J, Korb R, Brandon M, Demer D, Hewitt RP, Kahru M, Hewes CD (2004) Factors influencing the distribution, biomass, and productivity of phytoplankton in the Scotia Sea and adjoining waters. Deep-Sea Res II—Top Stud Oceanogr 51:1333–1350CrossRefGoogle Scholar
  19. Jeffrey SW (1997) Application of pigment methods to oceanography. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography. UNESCO, Paris, pp 661Google Scholar
  20. Johnson KS, Elrod VA, Fitzwater SE, Plant JN, Chavez FP, Tanner SJ, Gordon RM, Westphal DL, Perry KD, Wu J, Karl DM (2003) Surface ocean-lower atmosphere interactions in the Northeast Pacific Ocean Gyre: aerosols, iron, and the ecosystem response. Global Biogeochem Cycles 17(2):32CrossRefGoogle Scholar
  21. Kolber Z, Falkowski P (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665Google Scholar
  22. Kolber Z, Zehr J, Falkowski P (1988) Effects of growth irrandiance and nitrogen limitation on photosynthetic energy-conversion in photosystem-II. Plant Physiol 88:923–929PubMedCrossRefGoogle Scholar
  23. Kolber Z, Prasil O, Falkowski P (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim Biophys Acta 1367:88–106PubMedCrossRefGoogle Scholar
  24. Korb RE, Whitehouse MJ (2004) Contrasting primary production regimes around South Georgia, Southern Ocean: large blooms versus high nutrient, low chlorophyll waters. Deep-Sea Res I—Oceanogr Res Pap 51:721–738CrossRefGoogle Scholar
  25. Landing WM, Haraldsson C, Paxeus N (1986) Vinyl polymer agglomerate based transition metal cation chelating ion-exchange resin containing the 8-hydroxyquinoline functional group. Anal Chem 58(14):3031–3035CrossRefGoogle Scholar
  26. Laney SR (2003) Assessing the error in photosynthetic properties determined by fast repetition rate fluorometry. Limnol Oceanogr 48:2234–2242CrossRefGoogle Scholar
  27. Lindley S, Barber RT (1998) Phytoplankton response to natural and experimental iron addition. Deep-Sea Res II—Top Stud Oceanogr 45:1135–1149CrossRefGoogle Scholar
  28. Löscher B, DeBaar H, DeJong J, Veth C, Dehairs F (1997) The distribution of Fe in the Antarctic Circumpolar Current. Deep-Sea Res II—Top Stud Oceanogr 44:143–187CrossRefGoogle Scholar
  29. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5:1–13CrossRefGoogle Scholar
  30. Mengelt C, Abbott MR, Barth JA, Letelier RM, Measures CI, Vink S (2001) Phytoplankton pigment distribution in relation to silicic acid, iron and the physical structure across the Antarctic Polar Front, 170 degrees W, during austral summer. Deep-Sea Res II—Top Stud Oceanogr 48:4081–4100CrossRefGoogle Scholar
  31. Meredith MP, Watkins JL, Murphy EJ, Cunningham NJ, Wood AG, Korb R, Whitehouse MJ, Thorpe SE (2003) An anticyclonic circulation above the Northwest Georgia Rise, Southern Ocean. Geophys Res Lett 30(20):2061 (doi:10.1029/2003GL018039)Google Scholar
  32. Moore JK, Abbott MR (2002) Surface chlorophyll concentrations in relation to the Antarctic Polar Front: seasonal and spatial patterns from satellite observations. J Mar Syst 37:69–86CrossRefGoogle Scholar
  33. Moore JK, Abbott MR, Richman JG (1999) Location and dynamics of the Antarctic Polar Front from satellite sea surface temperature data. J Geophys Res 104:3059–3073Google Scholar
  34. Moore CM, Lucas MI, Sanders R, Davidson R (2005) Basin-scale variability of phytoplankton bio-optical characteristics in relation to bloom state and community structure in the Northeast Atlantic. Deep-Sea Res I—Oceanogr Res Pap 52:401–419CrossRefGoogle Scholar
  35. Nelson DM, Smith WO (1991) Sverdrup revisited—critical depths, maximum chlorophyll levels, and the control of Southern-Ocean productivity by the irradiance-mixing regime. Limnol Oceanogr 36:1650–1661CrossRefGoogle Scholar
  36. Nelson DM, Brzezinski MA, Sigmon DE, Franck VM (2001) A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep-Sea Res II—Top Stud Oceanogr 48:3973–3995CrossRefGoogle Scholar
  37. Obata H, Karatani H, Nakayama E (1993) Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Anal Chem 65:1524–1528CrossRefGoogle Scholar
  38. Olson RJ, Sosik HM, Chekalyuk AM, Shalapyonok A (2000) Effects of iron enrichment on phytoplankton in the Southern Ocean during late summer: active fluorescence and flow cytometric analyses. Deep-Sea Res II—Top Stud Oceanogr 47:3181–3200CrossRefGoogle Scholar
  39. Orsi A, Whitworth T III, Nowlin W Jr (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res I—Oceanogr Res Pap 5:641–673CrossRefGoogle Scholar
  40. Pollard RT, Lucas MI, Read JF (2002) Physical controls on biogeochemical zonation in the Southern Ocean. Deep-Sea Res II—Top Stud Oceanogr 49:3289–3305CrossRefGoogle Scholar
  41. Priddle J, Smetacek V, Bathmann U (1992) Antarctic marine primary production, biogeochemical cycles and climate change. Philos Trans R Soc Lond Ser B—Biol Sci 338:289–297CrossRefGoogle Scholar
  42. Raven JA (1990) Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and C assimilation pathway. New Phytol 116:1–18CrossRefGoogle Scholar
  43. Sanders R, Jickells T (2000) Total organic nutrients in Drake Passage. Deep-Sea Res I—Oceanogr Res Pap 47(6):997–1014CrossRefGoogle Scholar
  44. Sherrell RM, Boyle EA (1988). Zinc, chromium, vanadium and iron in the Mediterranean Sea. Deep-Sea Res I—Oceanogr Res Pap 35:1319–1334CrossRefGoogle Scholar
  45. Smetacek F, Scharek R, Nothig E-M (1990) Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill. In: Kerry KR, Hempel G (ed) Antarctic ecosystems: ecological change and conservation. Springer, Berlin Heidelberg, New York, pp 103–114Google Scholar
  46. Smetacek V, Klaas C, Menden-Deuer S, Rynearson TA (2002) Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front. Deep-Sea Res II—Top Stud Oceanogr 49:3835–3848CrossRefGoogle Scholar
  47. Smith WO Jr, Asper VL (2001) The influence of phytoplankton assemblage composition on biogeochemical characteristics and cycles in the southern Ross Sea, Antarctica. Deep-Sea Res I—Oceanogr Res Pap 48:137–161CrossRefGoogle Scholar
  48. Suggett DJ, MacIntyre HL, Geider RJ (2004) Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol Oceanogr: Methods 2:316–332Google Scholar
  49. Sullivan CW, Arrigo KR, McClain CR, Comiso JC, Firestone J (1993) Distributions of phytoplankton blooms in the Southern Ocean. Science 262:1832–1837PubMedCrossRefGoogle Scholar
  50. Sunda WG (2001) Bioavailability and Bioaccumulation of Iron in the Sea. In: Turner DR, Hunter KA (eds) Biogeochemistry of iron in seawater. Wiley, Chichester, pp 41–84Google Scholar
  51. Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392CrossRefGoogle Scholar
  52. Thorpe SE (2001) Variability of the Southern Antarctic Circumpolar Current in the Scotia Sea and its implications for transport to South Georgia. Ph.D. thesis, University of East Anglia, Norwich, UK, 212ppGoogle Scholar
  53. Thorpe SE, Heywood KJ, Brandon MA, Stevens DP (2002) Variability of the southern Antarctic Circumpolar Current front north of South Georgia. J Mar Syst 37:87–105CrossRefGoogle Scholar
  54. Timmermans KR, Davey MS, van der Wagt B, Snoek J, Geider RJ, Veldhuis M, Gerringa L, de Baar H (2001) Co-limitation by iron and light of Chaetoceros brevis, C. dichaeta and C.calcitrans (Bacillariophyceae). Mar Ecol—Prog Ser 217:287–297CrossRefGoogle Scholar
  55. Watson AJ, Bakker D, Ridgwell AJ, Boyd PW, Law CS (2000) Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 407:730–733CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Claire L. Holeton
    • 1
    Email author
  • Florence Nédélec
    • 1
  • Richard Sanders
    • 1
  • Louise Brown
    • 1
  • C. Mark Moore
    • 1
  • David P. Stevens
    • 2
  • Karen J. Heywood
    • 3
  • Peter J. Statham
    • 1
  • Cathy H. Lucas
    • 1
  1. 1.National Oceanography CentreSouthamptonUK
  2. 2.School of MathematicsUniversity of East AngliaNorwichUK
  3. 3.School of Environmental SciencesUniversity of East AngliaNorwichNR4 7TJUK

Personalised recommendations