Polar Biology

, Volume 27, Issue 12, pp 753–766 | Cite as

The moss dwelling testacean fauna of Île de la Possession

  • Sofie Vincke
  • Niek Gremmen
  • Louis Beyens
  • Bart Van de Vijver
Original Paper


An ecological study of the moss dwelling testacean fauna (Protozoa, Rhizopoda) on Île de la Possession (Crozet Archipelago, sub-Antarctica) revealed 83 taxa, belonging to 21 genera. The moss flora was dominated by cosmopolitan and ubiquitous taxa, such as Trinema lineare, T. enchelys, Euglypha laevis and E. rotunda. A cluster analysis and a correspondence analysis identified three communities: (1) a Corythion dubium assemblage found in a drier, slightly acidic terrestrial moss vegetation, (2) the Arcella arenaria, and (3) the Difflugiella crenulata assemblages, both characteristic of wetter, circumneutral habitats. The latter typified submerged mosses growing in running water, while the A. arenaria assemblage seemed to prefer mosses in standing waterbodies. Moisture conditions appeared to play a key role in determining the distribution pattern of testacean communities, while pH was only a secondary factor. A logistic regression emphasised the effect of the habitat type in controlling the variance in testacean assemblages. Moreover, the close relationship between bryophyte species and habitat type had a significant influence on the distribution pattern of the testate amoebae. Weighted averaging and calibration were used to estimate moisture optima and tolerances of the testate amoebae.



The sampling was made possible by the logistic and financial support of the French Polar Institute in the frame of the Terrestrial Program 136 (Dr. Yves Frenot and Ir. M. Lebouvier, Université de Rennes, France). Additional funding was provided by the Science Foundation, Flanders (FWO). Prof. Dr. W.H. De Smet is acknowledged for his help during sampling. Bart Van de Vijver is post-doctoral researcher at the FWO, Flanders. Prof. Dr. Stefan Van Dongen is thanked for his help with the logistic regression analysis.


  1. Beyens L, Chardez D (1984) Testate amoebae (Rhizopoda, Testaceae) from south-west Ireland. Arch Protistenkd 128:109–126Google Scholar
  2. Beyens L, Chardez D, De Landtsheer R, De Bock P, Jacques E (1986) Testate amoebae populations from moss and lichen habitats in the Arctic. Polar Biol 5:165–173Google Scholar
  3. Beyens L, Chardez D, De Baere D, De Bock P, Jacques E (1990) Ecology of terrestrial testate amoebae assemblages from coastal lowlands on Devon island (NWT, Canadian Arctic). Polar Biol 10:431–440Google Scholar
  4. Beyens L, Chardez D, De Baere D, De Bock P (1992) The testate amoebae from the Sondre Stromfjord region (West-Greenland): their biogeographic implications. Arch Protistenkd 142:5–13Google Scholar
  5. Beyens L, Chardez D, De Baere D, Verbruggen C (1995) The aquatic testate amoebae fauna of the Strømness Bay area, South Georgia. Antarct Sci 7:3–8Google Scholar
  6. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990) Diatoms and pH reconstruction. Philos Trans R Soc Lond B 327:263–278Google Scholar
  7. Bonnet L (1981) Thécamoebiens (Rhizopoda, Testacea). CNFRA Biol Sols 48:23–32Google Scholar
  8. Braak CJF ter (1990) CANOCO: a FORTRAN program for canonical community ordination. Microcomputer Power, IthacaGoogle Scholar
  9. Braak CJF ter, Prentice IC (1988) A theory of gradient analysis. Adv Ecol Res 18:271–317Google Scholar
  10. Braak CFJ ter, Smilauer P (1998) CANOCO reference manual and user’s guide to canoco for windows. Software for canonical community ordination (version 4). Centre for biometry, WageningenGoogle Scholar
  11. Braak CJF ter, Van Dam H (1989) Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178:209–223Google Scholar
  12. Chardez D, Beyens L, Bock P (1987) Thécamoebiens de Campine (Protozoa Rhizopoda Testacea). Bull Rech Agron Gembloux 22:285–300Google Scholar
  13. Charman DJ, Warner BG (1992) Relationship between testate amoebae (Protozoa: Rhizopoda) and microenvironmental parameters on a forested peatland in north-eastern Ontario. Can J Zool 70:2474–2482Google Scholar
  14. Charman DJ, Hendon D, Woodland WA (2000) The identification of testate amoebae (Protozoa: Rhizopoda) in peats. Quat Res Ass Technical Guide 9:1–147Google Scholar
  15. Cody ML (1975) Ecology and evolution of communities. In: Cody ML, Diamond JM (eds) Towards a theory of continental species diversity bird distributions over Mediterranean habitat gradients. Harvard University Press, Cambridge, pp 214–257Google Scholar
  16. Corbet SA (1973) An illustrated introduction to the testate rhizopods in Sphagnum, with special reference to the area around Malham Tarn, Yorkshire. Field Stud 3:801–838Google Scholar
  17. Costan G, Planas D (1986) Effects of a short-term experimental acidification on a microinvertebrate community: Rhizopoda, Testacea. Can J Zool 64:1224–1230Google Scholar
  18. Dastych H (1988) The tardigrada of Poland. Monografie Fauny Polski. Panstwowe Wydawnictwo Naukowe, Warszawa, Krakow, p 255Google Scholar
  19. Decloître L (1962) Le genre Euglypha Dujardin. Arch Protistenkd 106:51–100Google Scholar
  20. Decloître L (1978) Le genre Centropyxis I. Compléments à jour au 31 décembre 1974 de la Monographie du genre parue en 1929. Arch Protistenkd 120:63–85Google Scholar
  21. Decloître L (1979) Le genre Centropyxis II. Compléments à jour au 31 décembre 1974 de la Monographie du genre parue en 1929. Arch Protistenkd 121:162–192Google Scholar
  22. Decloître L (1981) Le genre Trinema Dujardin, 1841. Révision à jour au 31 décembre 1979. Arch Protistenkd 124:193–218Google Scholar
  23. Deflandre G (1928) Le genre Arcella. Arch Protistenkd 64:152–288Google Scholar
  24. Deflandre G (1929) Le genre Centropyxis. Arch Protistenkd 67:322–375Google Scholar
  25. Deflandre G (1936) Etude monographique sur le genre Nebela Leidy. Ann Protistol 5:201–327Google Scholar
  26. Ellison R (1995) Paleolimnological analysis of Ullswater using testate amoebae. J Paleolimnol 13:51–63Google Scholar
  27. Foissner W (1987) Soil protozoa: fundamental problems, ecological significance, adaptation in ciliates and testaceans, bioindicators and guide to the literature. Prog Protozool 2:69–212Google Scholar
  28. Frenot Y (1986) Interactions entre la faune lombricienne et les systèmes édaphiques d’une île subantarctique, Ile de la Possession, Archipel Crozet. Thesis, University of RennesGoogle Scholar
  29. Gremmen NJM (1981) The vegetation of the subantarctic islands Marion and Prince Edward. Junk, The Hague, pp 149Google Scholar
  30. Grospietsch T (1964) Die Gattungen Cryptodifflugia und Difflugiella (Rhizopoda, Testacea). Zool Anz 172:243–257Google Scholar
  31. Grospietsch T (1971) Rhizopoda. Beitrag zur Ökologie der testaceen Rhizopoden von Marion Island. In: Van Zinderen Bakker EM, Winterbottom JM, Dyer RA (eds) Marion and Prince Edward Islands. Balkema, Cape Town, pp 411–424Google Scholar
  32. Hall RI, Smol JP (1996) Paleolimnological assessment of long-term water quality changes in south-central Ontario lakes affected by cottage development and acidification. Can J Fish Aquat Sci 53:1–17Google Scholar
  33. Heal OW (1962) The abundance and micro-distribution of testate amoebae (Rhizopoda: Testacea) in sphagnum. Oikos 13:35–47Google Scholar
  34. Heal OW (1964) Observations on the seasonal and spatial distribution of Testacea (Protozoa: Rhizopoda) in sphagnum. J Anim Ecol 33:395–412Google Scholar
  35. Hébrard JP (1970) Muscines récoltées aux îles Kerguelen et Crozet pendant la campagne d’été des Terres Australes et Antarctiques Françaises (1969). Rev Bryol Lichenol 37:135–162Google Scholar
  36. Hoogenraad HR, de Groot AA (1940) Zoetwaterrhizopoden en—heliozoën. In: Boschma H (ed) Fauna van Nederland IX. Leiden, pp 303Google Scholar
  37. Jersabek CD (1995) Distribution and ecology of rotifer communities from high-altitude alpine sites—a multivariate approach. Dev Hydrobiol Rotifera 7:75–89Google Scholar
  38. Jongman RH, ter Braak CJF, van Tongeren OFR (1987) Data analysis in community and landscape ecology. Pudoc, WageningenGoogle Scholar
  39. Jongman RH, ter Braak CJF, van Tongeren OFR (1995) Data analysis in community and landscape ecology. Cambridge University Press, CambridgeGoogle Scholar
  40. Juggins S (2003) C2 Software for ecological and palaeoecological data analysis and visualization. User Guide Version 1.3. University of Newcastle, Newcastle-upon-Tyne, U.K.Google Scholar
  41. Jung W (1936) Thekamöben ursprünglicher, lebender deutscher Hochmoore. Abh Landesmus Provinz Westfalen Mus Naturkd 7:1–87Google Scholar
  42. Kinchin IM (1994) The biology of tardigrades. Blackwell, LondonGoogle Scholar
  43. Kovach Computing Services (2002) Multivariate statistical package version 3.1 users’ manual. Kovach Computing Services, Pentraeth, WalesGoogle Scholar
  44. Longton RE (1988) Biology of polar bryophytes and lichens. Cambridge University Press, CambridgeGoogle Scholar
  45. Medioli F, Scott D (1988) Lacustrine Thecamoebians (mainly Arcellaceans) as potential tools for paleolimnological interpretations. Palaeogeogr Palaeoclim Palaeoecol 62:361–386CrossRefGoogle Scholar
  46. Meisterfeld R (1977) Die horizontale und vertikale Verteilung der Testaceen (Rhizopoden, Testacea) in Sphagnum. Arch Hydrobiol 79:319–356Google Scholar
  47. Metcalfe SE (1988) Modern diatom assemblages in Central Mexico: the role of water chemistry and other environmental factors as indicated by TWINSPAN and DECORANA. Freshw Biol 19:217–233Google Scholar
  48. Mitchell EAD, Buttler AJ, Warner BG, Gobat JM (1999) Ecology of testate amoebae (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switserland and France. Ecoscience 6:565–576Google Scholar
  49. Mitchell EAD, Borcard D, Buttler AJ, Grosvernier P, Gilbert D, Gobat JM (2000a) Horizontal distribution patterns of testate amoebae (Protozoa) in a Sphagnum magellanicum carpet. Microb Ecol 39:290–300PubMedGoogle Scholar
  50. Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Albinsson, Greenup UL, Heijmans MMPD, Hoosbeek MR, Saarinen T (2000b) Relationships among testate amoebae (Protozoa), vegetation and water chemistry in five Sphagnum-dominated peatlands. New Phytol 145:95–106CrossRefGoogle Scholar
  51. Müller-Dombois D, Ellenberg H (1974) Aims and methods of vegetation ecology. Wiley, New YorkGoogle Scholar
  52. Nijssen D, Rousseau R, Van Hecke P (1998) The Lorenz curve: a graphical representation of evenness. Coenoses 13:33–38Google Scholar
  53. Ochyra R (1998) The moss flora of King George Island, Antarctica. Polish Academy of Sciences, W. Szafer Institute of Botany, Cracow, p 278Google Scholar
  54. Ogden CG (1983) Observations on the systematics of the genus Difflugia in Britain (Rhizopoda, Protozoa). Bull Br Mus Nat Hist Zool Ser 44:1–73Google Scholar
  55. Ogden CG, Hedley RH (1980) An atlas of freshwater testate amoebae. British Museum, Natural History, LondonGoogle Scholar
  56. Opravilova V, Zahradkova S (2003) Some information of the testate amoebae of Iceland. Limnologica 33:131–137Google Scholar
  57. Pejler B (1995) Relation to habitat in rotifers. Hydrobiologia 313/314:267-278Google Scholar
  58. Putzke J, Pereira AB (2001) The Antarctic mosses. With special attention to the South Shetland Islands. Editora Da Ulbra, BrazilGoogle Scholar
  59. Richters F (1907) Die Fauna der Moosrasen der Gaussbergs und einiger südlicher Inseln. Dtsche Südpol Expedition 9:259–302Google Scholar
  60. Schönborn W (1962) Die Ökologie der Testaceen des Krottensees (Salzburg, Österreich). Limnologica 14:49–88Google Scholar
  61. Schönborn W (1966) Testaceen als Bioindikatoren im System der Seentypen Untersuchungen in masurischen Seen und im Suwalki-Gebiet (Polen). Limnologica 4:1–11Google Scholar
  62. Schönborn W (1981) Population dynamics and production of Testacea (Protozoa: Rhizopoda) in the river Saale. Zool Jahrb Syst 108:301–313Google Scholar
  63. Schönborn W (1982) Die Produktion an Gehäuse-Protozoen in der Ilm. Limnologica 14:347–352Google Scholar
  64. Schönborn W (1992) The role of protozoan communities in freshwater and soil ecosystems. Acta Protozool 31:11–18Google Scholar
  65. Smith HG (1975) Protozoaires terricoles de l’Ile de la Possession. Rev Ecol Biol Sol 12:523–530Google Scholar
  66. Smith HG (1982) The terrestrial Protozoan fauna of South Georgia. Polar Biol 1:173–179Google Scholar
  67. Smith HG (1992) Distribution and ecology of testate rhizopod fauna of the continental Antarctic zone. Polar Biol 12:629–634Google Scholar
  68. Stonehouse B (1982) La zonation écologique sous les hautes latitudes australes. CNFRA 51:532–537Google Scholar
  69. Tolonen K (1986) Rhizopod analysis. In: Berglund BE (ed) Handbook of holocene paleoecology and paleohydrology. Wiley, Chichester, pp 645–666Google Scholar
  70. Tolonen K, Warner BG, Vasander H (1994) Ecology of testaceans (Protozoa: Rhizopoda) in mires in southern Finland: II. Multivariate analysis. Arch Protistenkd 144:97–112Google Scholar
  71. Van de Vijver B, Beyens L (1999) Freshwater diatoms from Ile de la Possession (Crozet Archipelago, sub-Antarctica): an ecological assessment. Polar Biol 22:178–188CrossRefGoogle Scholar
  72. Van de Vijver B, Ledeganck P, Beyens L (2001) Habitat preferences in freshwater diatom communities from sub-Antarctic Îles Kerguelen. Antarct Sci 13:28–36CrossRefGoogle Scholar
  73. Van Kerckvoorde A, Trappeniers K, Chardez D, Nijs I, Beyens L (2000) Testate amoebae communities from terrestrial moss habitats in the Zackenberg Area (North-East Greenland). Acta Protozool 39:27–33Google Scholar
  74. Van Zanten BO (1971) Musci. In: van Zinderen Bakker EM Sr, Winterbottom JM, Dyer RA (eds) Marion and Prince Edward Islands. Balkema, Capetown, pp 173–236Google Scholar
  75. Vincke S, Ledeganck P, Beyens L, Van de Vijver B (2004a) Soil testate amoebae from sub-Antarctic Îles Crozet. Antarct Sci 16:165–174CrossRefGoogle Scholar
  76. Vincke S, Beyens L, Van de Vijver B (2004b) Freshwater testate amoebae communities from Ile de la Possession (Crozet Archipelago, sub-Antarctica). Arct Antarct Alp Res (in press)Google Scholar
  77. Warner BG (1987) Abundance and diversity of testate amoebae (Rhizopoda, Testacea) in Sphagnum peatlands in south-western Ontario, Canada. Arch Protistenkd 133:270–275Google Scholar
  78. Warner BG, Charman DJ (1994) Holocene moisture changes on a peatland in northwestern Ontario based on fossil testate amoebae (Protozoa) analysis. Boreas 23:270–279Google Scholar
  79. Woodland WA, Charman DJ, Sims PC (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. Holocene 8:261–273CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Sofie Vincke
    • 1
  • Niek Gremmen
    • 2
    • 3
  • Louis Beyens
    • 1
  • Bart Van de Vijver
    • 1
  1. 1.Department of Biology, Unit of Polar Ecology, Limnology and PaleobiologyUniversity of Antwerp (Campus Middelheim)AntwerpBelgium
  2. 2.Data Analyse EcologieDieverThe Netherlands
  3. 3.NIOO-CEMOYersekeThe Netherlands

Personalised recommendations