Polar Biology

, Volume 27, Issue 4, pp 195–201 | Cite as

Antarctic reptant decapods: more than a myth?

Review

Abstract

The impoverished Antarctic decapod fauna is one of the most conspicuous biodiversity phenomena in polar science. Although physiological and ecological approaches have tried to explain the reason for the low decapod biodiversity pattern in the Southern Ocean, the complexity of this problem is still not completely understood. The scant records of crabs south of the Polar Front were always considered as exceptional, and have mostly been ignored by marine biologists world-wide, creating one of the most dogmatic paradigms in polar science. We herein review the record of both adults and larvae of reptants from the Southern Ocean. At present, several species of only lithodid crabs maintain considerable adult populations in circum-Antarctic waters, although they remain absent from the high-Antarctic shelves.

Notes

Acknowledgements

Our thanks are due to Ingo Fetzer (AWI) for help with translating the original Russian literature. We are grateful to Anne-Nina Lörz (NIWA, Wellington) and an anonymous reviewer for helpful comments on the manuscript.

References

  1. Abele LG (1991) Comparison of morphological and molecular phylogeny of the Decapoda. Mem Queensl Mus 31:101–108Google Scholar
  2. Anger K, Thatje S, Lovrich GA, Calcagno JA (2003) Larval and early juvenile development of Paralomis granulosa reared at different temperatures: tolerance of cold and food limitation in a lithodid crab from high latitudes. Mar Ecol Prog Ser 253:243–251Google Scholar
  3. Anger K, Lovrich GA, Thatje S, Calcagno JA (2004) Larval and early juvenile development of Lithodes santolla (Molina, 1782) (Decapoda: Anomura: Lithodidae) reared at different temperatures in the laboratory. J Exp Mar Biol Ecol (in press)Google Scholar
  4. Arana PM, Retamal MA (1999) Nueva distribución de Paralomis birsteini Macpherson 1988 en aguas antárticas (Anomura, Lithodidae, Lithodinae). Invest Mar Valparaíso 27:101–110Google Scholar
  5. Arntz WE, Gorny M (1991) Shrimp (Decapoda, Natantia) occurrence and distribution in the eastern Weddell Sea, Antarctica. Polar Biol 11:169–177Google Scholar
  6. Arntz WE, Brey T, Gerdes D, Gorny M, Gutt J, Hain S, Klages M (1992) Patterns of life history and population dynamics of benthic invertebrates under the high Antarctic conditions of the Weddell Sea. In: Colombo G, Ferrari I, Ceccherelli VU, Rossi R (eds) Marine eutrophication and population dynamics. Proc 25th European Marine Biology Symposium. Olsen & Olsen, Fredensborg, pp 221–230Google Scholar
  7. Arntz WE, Gorny M, Soto R, Lardies MA, Retamal M, Wehrtmann IS (1999) Species composition and distribution of decapod crustaceans in the waters off Patagonia and Tierra del Fuego, South America. Sci Mar 63 [Suppl 1]:303–314Google Scholar
  8. Aronson RB, Blake DB (1997 Global climate change and the paleoecology of echinoderm populations at Seymour Island, Antarctica. Antarct J US 32:20–22Google Scholar
  9. Aronson RB, Blake DB (2001) Global climate change and the origin of modern benthic communities in Antarctica. Am Zool 41:27–39Google Scholar
  10. Báez R, Bahamonde N, Sanhueza A (1986) Neolithodes diomedeae (Benedict, 1894) en Chile (Crustacea, Decapoda, Lithodidae). Invest Pesq Chile 33:105–110Google Scholar
  11. Barker PF, Dalziel IWD, Storey BC (1991) Tectonic development of the Scotia Arc region. In: Tingey RJ (ed) The geology of Antarctica. Clarendon, Oxford, pp 215–248Google Scholar
  12. Birstein JA, Vinogradov LG (1967) Occurrence of Paralomis spectabilis Hansen (Crustacea, Decapoda, Anomura) in the Antarctic. Biological results of the Soviet Antarctic Expedition (1955–1958) 3:390–398Google Scholar
  13. Birstein JA, Vinogradov LG (1972) Craboids (Decapoda, Anomura, Lithodidae) of the Atlantic sector of the Antarctic, South America and South Africa. Zool Zh 51:351–363Google Scholar
  14. Blake DB, Zinsmeister WJ (1988) Eocene asteroids (Echinodermata) from Seymour Island, Antarctic Peninsula. In: Feldmann RM, Woodburne MO (eds) Geology and paleontology of Seymour Island, Antarctic Peninsula. Geol Soc Am Mem 169:489–498Google Scholar
  15. Boas JEV (1880) Studier over Decapodernes Slaegtskabsforhold. Vidensk Selskab Skr 6. Raekke, naturvidensk Math Afd I.2:25–210Google Scholar
  16. Borradaile LA (1907) On the classification of the decapod crustaceans. Ann Mag Nat Hist 19:457–486Google Scholar
  17. Boschi EE, Scelzo MA, Goldstein B (1969) Dessarrollo larval del cangrejo Halicarcinus planatus (Fabricius) (Crustacea, Decapoda, Hymenosomidae), en el laboratorio, con observaciones sobre la distribución de la especie. Bull Mar Sci 19:225–242Google Scholar
  18. Boschi EE, Fischbach CE, Iorio MI (1992) Catálogo ilustrado de los crustáceos estamatópodos y decápodos marinos de Argentina. Frente Mar Montevideo 10:7–94Google Scholar
  19. Brey T, Dahm C, Gorny M, Klages M, Stiller M, Arntz WE (1996) Do Antarctic benthic invertebrates show an extended level of eurybathy? Antarct Sci 8:3–6Google Scholar
  20. Broch H (1961) Benthonic problems in Antarctic and Arctic waters. Sci Res Norw Antarct Exped 1927–1928 38:1–32Google Scholar
  21. Clarke A (1983) Life in cold waters: the physiological ecology of polar marine ectotherms. Oceanogr Mar Biol Annu Rev 21:341–453Google Scholar
  22. Clarke A (1990) Temperature and evolution: Southern Ocean cooling and the Antarctic marine fauna. In: Kerry KR, Hempel G (eds) Antarctic ecosystems. Ecological change and conservation. Springer, Berlin, Heidelberg New York, pp 9–22Google Scholar
  23. Clarke A, Crame JA (1989) The origin of the Southern Ocean marine fauna. In: Crame JA (ed) Origins and evolution of the Antarctic biota. Geol Soc Spec Publ 47:253–268Google Scholar
  24. Collins MA, Yau C, Guilfoye F, Bagley P, Everson I, Priede IG, Agnew D (2002) Assessment of stone crab (Lithodidae) density on the South Georgia slope using baited video cameras. ICES J Mar Sci 59:370–379CrossRefGoogle Scholar
  25. Crame JA (1999) An evolutionary perspective on marine faunal connections between southernmost South America and Antarctica. Sci Mar 63 [Suppl 1]:1–14Google Scholar
  26. De Broyer C, Krzysztof J, Dauby P (2003) Biodiversity pattern in the Southern Ocean: lessons from Crustacea. In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, Can der Vries SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, pp 201–214Google Scholar
  27. Dell RK (1972) Antarctic benthos. Adv Mar Sci 10:1–216Google Scholar
  28. Feldmann RM, Aguirre-Urreta M, Chirino-Halvez L, Casadío S (1997) Palaeobiogeography of Cretaceous and Tertiary decapod crustaceans from Southern South America: the link with Antarctica. The Antarctic region: geological evolution and processess. Siena, pp 1007–1016Google Scholar
  29. Feldmann RM, Schweitzer CW, Marenssi A (2003) Decapod crustaceans from the Eocene La Meseta Formation, Seymour Island, Antarctica: a model for preservation of decapods. J Geol Soc Lond 160:151–160Google Scholar
  30. Forster R, Gazdzicki A, Wrona R (1987) Homolodromiid crabs from the Cape Melvilee formation (Lower Miocene) of King George Island, West Antarctica. Palaeontol Res Pol Antarct Exped 49:147–161Google Scholar
  31. Frederich M (1999) Ecophysiological limits to the geographical distribution of reptant decapod crustaceans in the Antarctic. Rep Polar Res 335:1–133Google Scholar
  32. Frederich M, Sartoris FJ, Pörtner HO (2001) Distribution patterns of decapod crustaceans in polar areas: a result of magnesium regulation? Polar Biol 24:719–723CrossRefGoogle Scholar
  33. García-Raso JE, Manjón-Cabeza ME, Ramos A (2004) First record of Lithodidae (Crustacea: Decapoda: Anomura) on the Antarctic continental shelf. In: Thatje S, Calcagno JA, Arntz WE (eds) IBMANT 2003—Interactions Between the Magellan Region and the Antarctic, Symposium and Workshop. Rep Polar Mar Res (in press)Google Scholar
  34. Gorny M (1999) On the biogeography and ecology of the Southern Ocean decapod fauna. Sci Mar 63 [Suppl 1]:367–382Google Scholar
  35. Hale HM (1941) Decapod Crustacea. Br Aust NZ Antarct Res Exped 1929–1931 Ser B 4:259–286Google Scholar
  36. Kästner A (1993) Wirbellose Tiere. In: Gruner HE (ed) Arthropoda. Fischer, Jena, pp 1–1279Google Scholar
  37. Kattner G, Graeve M, Calcagno JA, Lovrich GA, Thatje S, Anger K (2003) Lipid, fatty acid and protein utilization during lecithotrophic larval development of Lithodes santolla (Molina) and Paralomis granulosa (Jacquinot). J Exp Mar Biol Ecol 292:61–74CrossRefGoogle Scholar
  38. Kirkwood JM (1984) A guide to the Decapoda of the Southern Ocean. ANARE Res Notes 11:47Google Scholar
  39. Klages M, Gutt J, Starmans A, Bruns T (1995) Stone crabs close to the Antarctic continent: Lithodes murrayi Henderson, 1888 (Crustacea; Decapoda; Anomura) off Peter I Island (68°51′S, 90°51′W). Polar Biol 15:73–75Google Scholar
  40. Lawver LA, Gahagan LM, Coffin MF (1992) The development of paleoseaways around Antarctica. The Antarctic paleoenvironment: a perspective on global change. Antarct Res Ser 56:7–30Google Scholar
  41. López LJ, Balguerías E (1994) On the presence of Paralomis spinosissima and Paralomis formosa in catches taken during the Spanish survey Antártida 8611. CCAMLR Sci 1:165–173Google Scholar
  42. Macpherson E (1988a) Revision of the family Lithodidae Samouelle, 1819 (Crustacea, Decapoda, Anomura) in the Atlantic Ocean. Monogr Zool Mar 2:9–153Google Scholar
  43. Macpherson E (1988b) Three new species of Paralomis (Crustacea, Decapoda, Anomura) from the Pacific and Antarctic oceans. Zool Scr 17:69–75Google Scholar
  44. Otto RS, Macintosh RA (1996) Observations on the biology of the lithodid crab Paralomis spinosissima from the Southern Ocean near South Georgia. High latitude crabs: biology, management and economics. Alaska Sea Grant Coll Progr Rep no. 96–02. University of Alaska, FairbanksGoogle Scholar
  45. Peck LS (2001) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40CrossRefGoogle Scholar
  46. Pfeffer G (1887) Die Krebse von Süd-Georgien nach der Ausbeute der Deutschen Station 1882–83. I. Jahrb Hamburg Wiss Anst 4:41–150Google Scholar
  47. Pörtner HO (2002) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol Part A 132:739–761CrossRefGoogle Scholar
  48. Retamal MA (1981) Catálogo ilustrado de los crustáceos decápodos de Chile. Gayana 44:1–110Google Scholar
  49. Retamal MA (1992) Los Lithodidae chilenos. Ans Inst Pat Ser Cs Nat Punta Arenas Chile 21:111–129Google Scholar
  50. Scholtz G, Richter S (1995) Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zool J Linn Soc 113:289–328CrossRefGoogle Scholar
  51. Schram FR (1982) The fossil record and evolution of Crustacea, In: Abele LG (ed) The biology of Crustacea, vol 1. Academic, New York, pp 93–147Google Scholar
  52. Seabrooke JM, Hufford GJ, Elder RB (1971) Formation of the Antarctic bottom water in the Weddell Sea. J Geophys Res 76:2164–2178Google Scholar
  53. Stebbing TRR (1914) Stalk-eyed Crustacea Malacostraca of the Scottish National Antarctic Expedition. Trans R Soc Edinburgh 50:253–307Google Scholar
  54. Takeda M, Hatanaka H (1984) Records of decapod crustaceans from the southwestern Atlantic collected by the Japanese fisheries research trawlers. Bull Nat Sci Mus Tokyo Ser A 10:7–24Google Scholar
  55. Tentori E, Lockwood APM (1990) Haemolymph magnesium levels in some oceanic Crustacea. Comp Biochem Physiol A 95:545–548CrossRefGoogle Scholar
  56. Thatje S (2003) Campylonotus arntzianus, a new species of the Campylonotidae (Crustacea: Decapoda: Caridea) from the Scotia Sea (Antarctica). Polar Biol 26:242–248Google Scholar
  57. Thatje S (2004) Reproductive trade-offs in benthic decapod crustaceans of high southern latitudes: tolerance of cold and food limitation. Rep Polar Mar Res (in press)Google Scholar
  58. Thatje S, Fuentes V (2003) First record of anomuran and brachyuran larvae (Crustacea: Decapoda) from Antarctic waters. Polar Biol 26:279–282Google Scholar
  59. Thatje S, Schnack-Schiel S, Arntz W (2003a) Developmental trade-offs in Subantarctic meroplankton communities and the enigma of low decapod diversity in high southern latitudes. Mar Ecol Prog Ser 260:195–207Google Scholar
  60. Thatje S, Calcagno JA, Lovrich GA, Sartoris FJ, Anger K (2003b) Extended hatching periods in the Subantarctic lithodid crabs Lithodes santolla and Paralomis granulosa (Crustacea: Decapoda). Helgol Mar Res 57:110–113CrossRefGoogle Scholar
  61. Tiefenbacher L (1990) Eualus kinzeri, a new hippolytid shrimp from the Weddell Sea (Antarctica) (Crustacea: Decapoda: Natantia). Spixiana 13:117–120Google Scholar
  62. Tiefenbacher L (1994) Decapode Crustaceen aus westantarktischen Gewässern gesammelt von der R.V. “John Biscoe”, Reise 11. Spixiana 17:13–19Google Scholar
  63. Woll AK, Burmeister A (2002) Occurrence of northern stone crab (Lithodes maja) at southeast Greenland. In: Paul AJ, Dawe EG, Elner R, Jamieson GS, Kruse GH, Otto RS, Sainte-Marie B, Shirley TC, Woodby D (eds) Crabs in cold water regions: biology, management, and economics. University of Alaska Sea Grant College Program AK-SG-02-01, Fairbanks, pp 733–749Google Scholar
  64. Yaldwyn JC (1965) Antarctic and subantarctic decapod Crustacea. In: Mieghem J van, Oye P van (eds) Biogeography and ecology in the Antarctic. Junk, The Hague, pp 324–332Google Scholar
  65. Zaklan SD (2002) Review of the family Lithodidae (Crustacea: Anomura: Paguroidea): distribution, biology, and fisheries . In: Paul AJ, Dawe EG, Elner R, Jamieson GS, Kruse GH, Otto RS, Sainte-Marie B, Shirley TC, Woodby D (eds) Crabs in cold water regions: biology, management, and economics. University of Alaska Sea Grant College Program AK-SG-02-01, Fairbanks, pp 751–845Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations