Polar Biology

, Volume 26, Issue 8, pp 500–508 | Cite as

Long life cycle and high adult survival in an arctic population of the mite Ameronothrus lineatus (Acari, Oribatida) from Svalbard

  • Guldborg Søvik
  • Hans Petter LeinaasEmail author
Original Paper


Field experiments investigated survival and development in an arctic population of the oribatid mite Ameronothrus lineatus living on cyanobacterial mats. Mites were sorted to instar and kept in microcosms for 1 year (1997–1998). Juvenile winter survival was high (56–79%), but only about 50% of the adults survived the winter. Summer survival was high in all instars (60–80%). This gave a high survival to adulthood (13.3%). A synchronized moult was observed in July, but juvenile development during the rest of the exceptionally warm summer of 1998 varied both between and within stages, with immatures moulting not at all or up to two times. In a second set of cohorts, experiencing a shorter summer, most juveniles moulted once. Thus, A. lineatus has a flexible life cycle with the juvenile stages normally lasting 1 year, giving a larva-to-larva developmental time of 5 years, but with an increased developmental rate in warm summers. Development also seemed to depend on gender, with males developing faster than females. Adult longevity was studied in the laboratory, and most of the adults lived for 2–3 years.


Salt Marsh Oribatid Mite Winter Survival Retrieval Rate Adult Longevity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Inger Alsos for identifying the Carex-species in the Adventdalen study site and Sigmund Spjelkavik for lending us Tinytalks. Part of the laboratory work was carried out at the University Centre on Svalbard (UNIS). The Norwegian Meteorological Institute kindly provided the meteorological data. Steve Coulson, Ian Hodkinson, Rolf Anker Ims, Torstein Solhøy and two anonymous referees gave valuable comments on the manuscript. The study was financed by the Norwegian Research Council and supported by grants from the Norwegian National Committee on Polar Research.


  1. Bhattacharya T, Joy VC, Joy S (1978) Studies on the effect of temperature on the development of Oppia nodosa Hammer (Acari: Cryptostigmata: Oppiidae). Entomon 3:149–155Google Scholar
  2. Block W (1965) The life histories of Platynothrus peltifer (Koch 1839) and Damaeus clavipes (Hermann 1804) (Acarina: Cryptostigmata) in soils in Pennine moorland. Acarologia 7:735–743Google Scholar
  3. Block W, Convey P (1995) The biology, life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus. J Zool (Lond) 236:431–449Google Scholar
  4. Bücking J, Ernst H, Siemer F (1998) Population dynamics of phytophagous mites inhabiting rocky shores—K-strategists in an extreme environment? In: Ebermann E (ed) Arthropod biology: contributions to morphology, ecology and systematics. Biosystematics and ecology series, vol 14. Verlag der Österreichischen Akademie der Wissenschaften, Vienna, pp 93–143Google Scholar
  5. Convey P (1994) Growth and survival strategy of the Antarctic mite Alaskozetes antarcticus. Ecography 17:97–107Google Scholar
  6. Convey P (2001) Antarctic ecosystems. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1. Academic Press, San Diego, pp 171–184Google Scholar
  7. Convey P, Worland M (2000) Refining the risk of freezing mortality for Antarctic terrestrial microarthropods. Cryo Letters 21:333–338PubMedGoogle Scholar
  8. Coulson SJ, Hodkinson ID, Strathdee AT, Block W, Webb NR, Bale JS, Worland MR (1995) Thermal environments of arctic soil organisms during winter. Arct Alp Res 27:364–370Google Scholar
  9. Danks HV (1981) Arctic arthropods. A review of systematics and ecology with particular reference to the North American fauna. Biological survey project. Entomological Society of Canada, OttawaGoogle Scholar
  10. Enami Y (1992) Life history of Epidamaeus verrucatus Enami et Fujikawa (Acari: Damaeidae), with morphological description of its immature stage. Edaphologia 48:23–29Google Scholar
  11. Hansen MP (2000) Seasonal variation in tolerance of cold and drought in Ameronothrus lapponicus (Acari: Oribatida) from Finse, Norway.Thesis, University of Bergen, NorwayGoogle Scholar
  12. Haq MA (1982) Pheromonal regulation of aggregation and moulting in Archegozetes longisetosus (Acari, Oribatei). Calicut University research journal, vol 19. Special conference number, May 1982Google Scholar
  13. Honciuc V (1996) Laboratory studies of the behaviour and life cycle of Archegozetes longisetosus Aoki 1965 (Oribatida). In: Mitchell R, Horn DJ, Needham GR, Welbourn WC (eds) Acarology IX. Proceedings. Ohio Biological Survey, Columbus, pp 637–640Google Scholar
  14. Kaneko N (1988) Life history of Oppiella nova (Oudemans) (Oribatei) in cool temperate forest soils in Japan. Acarologia 29:215–221Google Scholar
  15. Kuriki G (1995) Life cycle of Trhypochthoniellus setosus Willmann (Acari: Trhypochthoniidae) in a Sphagnum moor at Yachidaira, Northeast Japan. J Acarol Soc Jpn 4:113–122Google Scholar
  16. Lebrun P (1970) Écologie et biologie de Nothrus palustris (C. L. Koch 1839). 3e note. Cycle de vie. Acarologia 12:193–207PubMedGoogle Scholar
  17. Lebrun P (1974) Écologie du développement de Damaeus onustus et Damaeus clavipes (Acariens, Oribates) influence de la température. Acarologia 16:343–357Google Scholar
  18. Lebrun P (1977) Comparaison des effets des températures constantes ou variables sur la durée de développement de Damaeus onustus (Acarina: Oribatei). Acarologia 19:136–143Google Scholar
  19. Leinaas HP (1983) Synchronized moulting controlled by communication in group-living Collembola. Science 219:193–195Google Scholar
  20. Luxton M (1981a) Studies on the oribatid mites of a Danish beech wood soil. IV. Developmental biology. Pedobiologia 21:312–340Google Scholar
  21. Luxton M (1981b) Studies on the oribatid mites of a Danish beech wood soil. VI. Seasonal population changes. Pedobiologia 21:387–409Google Scholar
  22. Marshall DJ, Convey P (1999) Compact aggregation and life-history strategy in a continental Antarctic mite. In: Bruin J, Geest LPS van der, Sabelis MW (eds) Ecology and evolution of the Acari. Kluwer, Dordrecht, pp 557–567Google Scholar
  23. Marshall DJ, Pugh PJA (1996) Origin of the inland Acari of Continental Antarctica, with particular reference to Dronning Maud Land. Zool J Linn Soc 118:101–118CrossRefGoogle Scholar
  24. Mitchell MJ (1977) Population dynamics of oribatid mites (Acari, Cryptostigmata) in an aspen woodland soil. Pedobiologia 17:305–319Google Scholar
  25. Norton RA (1994) Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In: Houck MA (ed) Mites. Ecological and evolutionary analyses of life-history patterns. Chapman and Hall, New York, pp 99–135Google Scholar
  26. Ramani N, Haq MA (1988) Developmental studies of Uracrobates indicus (Acari: Oribatei) inhabiting Mangifera indica. In: Channabasavanna GP, Viraktamath CA (eds) Progress in acarology, vol 1. Oxford and IBH Publishing, New Dehli, pp 483–489Google Scholar
  27. Raspotnig G, Krisper G (1998) Fatty acids as cuticular surface components in oribatid mites (Acari: Oribatida). In: Ebermann E (ed) Arthropod biology: contributions to morphology, ecology and systematics. biosystematics and ecology, vol 14. Verlag der Österreichischen Akademie der Wissenschaften, Vienna, pp 215–243Google Scholar
  28. Raspotnig G, Schuster R, Krisper G, Fauler G, Leis H-J (2001) Chemistry of the oil gland secretion of Collohmannia gigantea (Acari: Oribatida). Exp Appl Acarol 25:933–946CrossRefPubMedGoogle Scholar
  29. Schatz H (1983) Überlebensrate von Oromurcia sudetica Willmann (Acari, Oribatei) von einer alpinen Wiese Tirols (Obergurgl, Zentralalpen). Zool Jahrb Syst 110:97–109Google Scholar
  30. Schatz H (1985) The life cycle of an alpine oribatid mite, Oromurcia sudetica Willmann. Acarologia 26:95–100Google Scholar
  31. Schubart H (1975) Morphologische Grundlagen für die Klärung der Verwandtschaftsbeziehungen innerhalb der Milbenfamilie Ameronothridae (Acari, Oribatei). Zoologica 123:23–94Google Scholar
  32. Shimada K, Pan C, Ohyama Y (1992) Variation in summer cold-hardiness of the Antarctic oribatid mite Alaskozetes antarcticus from contrasting habitats on King George Island. Polar Biol 12:701–706Google Scholar
  33. Solhøy T (1975) Dynamics of oribatei populations on Hardangervidda. In: Wielgolaski FE (ed) Ecological studies 17. Fennoscandian tundra ecosystems, part 2. Animals and systems analysis. Springer, Berlin Heidelberg New York, pp 60–65Google Scholar
  34. Søvik G, Leinaas HP (2002) Variation in extraction efficiency between juvenile and adult oribatid mites: Ameronothrus lineatus (Oribatida, Acari) in a Macfadyen high-gradient canister extractor. Pedobiologia 46:34–41Google Scholar
  35. Søvik G, Leinaas HP, Ims RA, Solhøy T (2003) Population dynamics and life history of the oribatid mite Ameronothrus lineatus (Thorell 1871) (Acari, Oribatida) on the high arctic archipelago of Svalbard: a field study. Pedobiologia (in press)Google Scholar
  36. Stamou GP (1989) Studies on the effect of temperature on the demographic parameters of Achipteria holomonensis (Acari, Oribatida). Acarologia 30:171–180Google Scholar
  37. Stamou GP, Sgardelis SP (1989) Seasonal distribution patterns of oribatid mites (Acari: Cryptostigmata) in a forest ecosystem. J Anim Ecol 58:893–904Google Scholar
  38. Sugawara H, Ohyama Y, Higashi S (1995) Distribution and temperature tolerance of the Antarctic free-living mite Antarcticola meyeri (Acari, Cryptostigmata). Polar Biol 15:1–8Google Scholar
  39. Taberly G (1988) Cycle de vie de Platynothrus peltifer (Koch) (Acarien, Oribate). Influence de la température et mise en évidence d'un seuil thermique supra-optimal. Vie Milieu 38:85–94Google Scholar
  40. Vera H, Berthet P (1988) Fréquence de mue et taux de survie de deux populations de Platynothrus peltifer (Acari: Oribatidae). Acta Oecol 9:281–291Google Scholar
  41. Webb NR (1977) Observations on Steganacarus magnus general biology and life cycle. Acarologia 19:686–696Google Scholar
  42. Webb NR, Block W (1993) Aspects of cold hardiness in Steganacarus magnus (Acari: Cryptostigmata). Exp Appl Acarol 17:741–748Google Scholar
  43. Weigmann G (1975) Labor- und Freilanduntersuchungen zur Generationsdauer von Oribatiden (Acari: Oribatei). Pedobiologia 15:133–148Google Scholar
  44. Woodring JP, Cook EF (1962) The biology of Ceratozetes cisalpinus Berlese, Scheloribates laevigatus Koch, and Oppia neerlandica Oudemans (Oribatei), with a description of all stages. Acarologia 4:101–137Google Scholar
  45. Young SR, Block W (1980) Experimental studies on the cold tolerance of Alaskozetes antarcticus. J Insect Physiol 26:189–200Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Biology, Division of ZoologyUniversity of Oslo OsloNorway

Personalised recommendations