Polar Biology

, Volume 26, Issue 3, pp 186–194 | Cite as

Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis

  • M. MontresorEmail author
  • C. Lovejoy
  • L. Orsini
  • G. Procaccini
  • S. Roy
Original Paper


Morphological investigations of motile cells and cysts of a small dinoflagellate (strain CCMP 2088) isolated from Canadian Arctic waters were carried out under both light and scanning electron microscopy. This species strongly resembled Polarella glacialis (strain CCMP 1383), which up to now was known only from Antarctic sea ice. The photosynthetic pigment composition of strain CCMP 2088 is typical of dinoflagellates, with peridinin as a major accessory pigment. Phylogenetic relationships between the two strains and other dinoflagellate species were inferred from SSU nrDNA using Neighbour Joining and weighted parsimony analyses. Our results showed that strain CCMP 2088 and P. glacialis (strain CCMP 1383) grouped in the same clade (Suessiales clade), showing high similarity values (0.99%). Morphological and molecular data support the assignment of the Arctic strain to P. glacialis. The free-living Gymnodinium simplex and the two P. glacialis strains have a basal position in the Suessiales clade, as compared to Symbiodinium spp.


Dinoflagellate Motile Cell Motile Stage Thecal Plate Bipolar Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank E. Biffali and the Molecular Biology Service of the Stazione Zoologica "A. Dohrn" for technical support during sequencing. Sampling was in conjunction with the International North Water Polynya project financed by the Natural Sciences and Engineering Research Council of Canada (NSERC) funds FCAR (Québec) and Fisheries and Oceans, Canada. C.L. was supported by NSERC post-graduate fellowships (PGA and PGB) throughout the study.


  1. Aagaard K, Carmack EC (1994) The Arctic Ocean and climate: a perspective. In: Johannnessen OM, Muench RD, Overland JE (eds) The Polar Oceans and their role in shaping the Global environment. The Nansen Centenial Volume, Geophysical Monograph Series 85 AGU, Washington, DC, pp 5–20Google Scholar
  2. Bucefalo Palliani R, Riding JB (1997) Umbriadinium mediterraneense gen. et sp. nov. and Valvaeodinium hirsutum sp. nov.: two dinoflagellate cysts from the Lower Jurassic of the Tethyan Realm. Palynology 21:197–206Google Scholar
  3. Buck KR, Bolt PA, Bentham WN, Garrison DL (1992) A dinoflagellate cyst from Antarctic sea ice. J Phycol 28:15–18Google Scholar
  4. Carlos AA, Baillie BK, Kawachi M, Maruyama T (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cariids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062Google Scholar
  5. Crame J (1993) Bipolar mollusks and their evolutionary implications. J Biogeogr 20:145–161Google Scholar
  6. Darius H, Martin P, Grimont P, Dauga C (2000) Small subunit rDNA sequence analysis of symbiotic dinoflagellates from seven scleractinian corals in a Tahitian lagoon. J Phycol 36:951–959Google Scholar
  7. Darling KF, Wade CM, Stewart IA, Kroon D, Dingle R, Brown AJL (2000) Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405:43–47Google Scholar
  8. Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317Google Scholar
  9. Dodge JD (1974) A redescription of the dinoflagellate Gymnodinium simplex with the aid of electron microscopy. J Mar Biol Assoc UK 54:171–177Google Scholar
  10. Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DJ, Williams GL (1993) A classification of living and fossil dinoflagellates. Micropaleontology Special Publication no 7. Sheridan, Hanover, PaGoogle Scholar
  11. Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063CrossRefPubMedGoogle Scholar
  12. Fryxell GA, Doucette GJ, Hubbard GF (1981) The genus Thalassiosira: the bipolar diatom T. antarctica Comber. Bot Mar 24:321–335Google Scholar
  13. Garrison DL, Buck KR (1989) The biota of Antarctic pack ice in the Weddell Sea and Antarctic peninsula region. Polar Biol 10:211–219Google Scholar
  14. Gast RJ, Caron DA (1996) Molecular phylogeny of symbiotic dinoflagellates from planktonic foraminifera and radiolaria. Mol Biol Evol 13:1192–1197PubMedGoogle Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195PubMedGoogle Scholar
  17. Ikävalko J, Gradinger R (1997) Flagellates and heliozoans in the Greenland Sea ice studied alive using light microscopy. Polar Biol 17:473–481CrossRefGoogle Scholar
  18. Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography. UNESCO, ParisGoogle Scholar
  19. Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23:633–638Google Scholar
  20. Klimyuk VI, Carrol BJ, Thomas CM, Jones JDG (1993) Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3:493–494PubMedGoogle Scholar
  21. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiontic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a "species" level marker. J Phycol 37:866–880Google Scholar
  22. Langer MR, Lipps JH (1995) Phylogenetic incongruence between dinoflagellate endosymbionts (Symbiodinium) and their host foraminifera ( Sorites): small-subunit ribosomal RNA gene sequences evidence. Mar Micropaleontol 26:179–186CrossRefGoogle Scholar
  23. Larsen A (1999) Prymnesium parvum and P. patelliferum (Haptophyta)—one species. Phycologia 38:541–543Google Scholar
  24. Litaker RW, Tester PA, Colorni A, Levy MG, Noga EJ (1999) The phylogenetic relationship of Pfiesteria piscicida, cryptoperidiniopsoid sp. Amyloodinium ocellatum and a Pfiesteria-like dinoflagellate to other dinoflagellates and apicomplexans. J Phycol 35:1379–1389CrossRefGoogle Scholar
  25. Loeblich III AR, Sherley JL (1979) Observations on the theca of the motile phase of free-living and symbiotic isolates of Zooxanthella microadriatica (Freudenthal) comb. nov. J Mar Biol Assoc UK 59:195–205Google Scholar
  26. Marino D, Montresor M, Mazzella L, Saggiomo V (1994) Diatom flora in oval faecal pellets from Terra Nova Bay (Antarctica). In: Marino D, Montresor M (eds) Proceedings of the 13th International Diatom Symposium. Biopress, Bristol, pp 229–240Google Scholar
  27. McMinn A (1995) Why are there no post-Palaeogene dinoflagellate cysts in the Southern Ocean? Micropaleontology 41:383–386Google Scholar
  28. McMinn A (1996) Preliminary investigation of the contribution of fast-ice algae to the spring phytoplankton bloom in Ellis Fjord, eastern Antarctica. Polar Biol 16:301–307CrossRefGoogle Scholar
  29. McMinn A, Hodgson D (1993) Summer phytoplankton succession in Ellis Fjord, eastern Antarctica. J Plankton Res 15:925–938Google Scholar
  30. Medlin LK, Elwood HJ, Stickel S, Sogin ML (1991) Morphological and genetic variation within the diatom Skeletonema costatum (Bacillariophyta): evidence for a new species, Skeletonema pseudocostatum. J Phycol 27:514–524Google Scholar
  31. Medlin LK, Lange M, Baumann MEM (1994) Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33:199–212Google Scholar
  32. Meunier A (1910) Microplancton des Mers de Barents et de Kara. Duc d'Orléans, Campagne Arctique de 1907. Bulens, BrusselsGoogle Scholar
  33. Montresor M, Procaccini G, Stoecker DK (1999) Polarella glacialis gen. nov., sp. nov. (Dinophyceae): Suessiaceae are still alive! J Phycol 35:186–197CrossRefGoogle Scholar
  34. Montresor M, Sgrosso S, Procaccini G, Kooistra WHCF (2003) Intraspecific diversity in Scrippsiella trochoidea (Dinophyceae): evidence for cryptic species. Phycologia (in press)Google Scholar
  35. Moro I, Paccagnella R, Barbante C, Andreoli C (2000) Microalgal communities of the sea ice, ice-covered and ice-free waters of Wood Bay (Ross sea, Antarctica) during the austral summer 1993–94. PSZNI Mar Ecol 21:233–245CrossRefGoogle Scholar
  36. Nichols R (2001) Genes trees and species trees are not the same. Trends Ecol Evol 16:358–364CrossRefPubMedGoogle Scholar
  37. Okolodkov JB (1998) A checklist of dinoflagellates recorded from the Russian Arctic seas. Sarsia 83:267–292Google Scholar
  38. Oldach DW, Delwiche CF, Jacobsen KS, Tengs T, Brown EG, Kempton JW, Schaefer EF, Bowers HA, Glasgow HB, Burkholder J-AM, Steidinger KA, Rublee PA (2000) Heteroduplex mobility assay-guided sequence discovery: elucidation of the small subunit (18S) rDNA sequences of Pfiesteria piscicida and related dinoflagellates from complex algal culture and environmental sample DNA pools. Proc Natl Acad Sci USA 97:4303–4308CrossRefPubMedGoogle Scholar
  39. Oppen MJH van, Olsen JL, Stam WT, van den Hoek C, Wiencke C (1993) Arctic-Antarctic disjunctions in the benthic seaweeds Acrosiphonia arcta (Chlorophyta) and Desmarestia viridis/willii (Phaeophyta) are of recent origin. Mar Biol 115:381–386Google Scholar
  40. Oppen MJH van, Dieckmann OE, Wienke C, Stam WT, Olsen JL (1994) Tracking dispersal routes: phylogeography of the Arctic-Antarctic disjunct seaweed Acrosyphonia arcta (Chlorophyta). J Phycol 30:67–80Google Scholar
  41. Oppen MJH van, Klerk H, Olsen JL, Stam WT (1996) Hidden diversity in marine algae: some examples of genetic variation below the species level. J Mar Biol Assoc UK 76:239–242Google Scholar
  42. Page RDM, Charleston MA (1997) From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol Phylogenet Evol 7:231–240CrossRefPubMedGoogle Scholar
  43. Palumbi SR (1994) Genetic divergence, reproductive isolation and marine speciation. Annu Rev Ecol Syst 25:547–572CrossRefGoogle Scholar
  44. Patterson DJ (1999) The diversity of Eukaryotes. Am Nat 65S:96–124Google Scholar
  45. Pawlowski J, Bolivar I, Fahrni JF, De Vargas C, Gouy M, Zaninetti L (1997) Extreme differences in rates of molecular evolution of Foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol Biol Evol 14:498–505PubMedGoogle Scholar
  46. Pierce RW, Turner JT (1993) Global biogeography of marine tintinnids. Mar Ecol Prog Ser 94:11–26Google Scholar
  47. Rowan R, Powers DA (1992) Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Natl Acad Sci USA 89:3639–3643PubMedGoogle Scholar
  48. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175CrossRefPubMedGoogle Scholar
  49. Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-Smith T (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacement. J Mol Evol 53:204–213CrossRefPubMedGoogle Scholar
  50. Saunders GW, Hill DRA, Sexton JP, Andersen RA (1997) Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. In: Bhattacharya D (ed) Origins of algae and their plastids. Springer, Berlin Heidelberg New York, pp 237–259Google Scholar
  51. Sokal RR, Rohlf FJ (1981) Biometry. Freeman, San FranciscoGoogle Scholar
  52. Spero HJ (1987) Symbiosis in the planktonic foraminifer, Orbulina universa, and the isolation of its symbiotic dinoflagellate Gymnodinium béii sp. nov. J Phycol 23:307–317Google Scholar
  53. Stoecker DK, Buck KR, Putt M (1992) Changes in the sea-ice brine community during the spring-summer transition, McMurdo Sound, Antarctica. I. Photosynthetic protists. Mar Ecol Prog Ser 84:265–278Google Scholar
  54. Stoecker DK, Gustafson DE, Merrell JR, Black MMD, Baier CT (1997) Excystment and growth of chrysophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice. J Phycol 33:585–595Google Scholar
  55. Stoecker DK, Gustafson DE, Black MMD, Baier CT (1998) Population dynamics of microalgae in the upper land-fast sea ice at a snow-free location. J Phycol 34:60–69CrossRefGoogle Scholar
  56. Stoecker DK, Gustafson DE, Baier CT, Black MMD (2000) Primary production in the upper sea ice. Aquat Microb Ecol 21:275–287Google Scholar
  57. Swofford DL (2002) PAUP*—Phylogenetic Analysis Using Parsimony (* and other methods) Version 4.0b10. Sinauer, Sunderland, MassGoogle Scholar
  58. Templeton AR, Maskas SD, Cruzan MB (2000) Gene trees: a powerful tool for exploring the evolutionary biology of species and speciation. Plant Species Biol 15:211–222CrossRefGoogle Scholar
  59. Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen KS (2000) Phylogenetic analyses indicate that the 19'hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718–729PubMedGoogle Scholar
  60. Thompson JD, Higgins DG, Gibbson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedGoogle Scholar
  61. Thomson PG, Nichols P, Bolch C, Skerratt J, Wright S, McMinn A (2003) Antarctic distribution, pigment and lipid composition and molecular identification of the brine dinoflagellate Polarella glacialis (Dinophyceae). J. Phycol (in press)Google Scholar
  62. Throndsen J (1995) Estimating cell numbers. In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. UNESCO, Paris, pp 63–80Google Scholar
  63. Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull Woods Hole 201:348–359Google Scholar
  64. Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal; S. goreauii sp. nov; S. kawagutii sp. nov. and S. pilosum sp. nov. : gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol 23:469–481Google Scholar
  65. Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12:374–385Google Scholar
  66. Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton: a new method using reversed-phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Montresor
    • 1
    Email author
  • C. Lovejoy
    • 2
    • 4
  • L. Orsini
    • 1
  • G. Procaccini
    • 1
  • S. Roy
    • 3
  1. 1.Stazione Zoologica "A. Dohrn", Villa ComunaleNaplesItaly
  2. 2.GIROQ, Biologie, Pavillon VachonUniversité LavalQuebecCanada
  3. 3.Institut des Sciences de la Mer de Rimouski and Québec-OcéanUniversité du Québec à RimouskiRimouskiCanada
  4. 4.Institut de Ciències del MarCMIMABarcelonaSpain

Personalised recommendations