Advertisement

Plant Cell Reports

, Volume 39, Issue 1, pp 149–162 | Cite as

QTL-seq reveals genomic regions associated with spikelet fertility in response to a high temperature in rice (Oryza sativa L.)

  • Phakchana Nubankoh
  • Samart Wanchana
  • Chatree Saensuk
  • Vinitchan Ruanjaichon
  • Sulaiman Cheabu
  • Apichart Vanavichit
  • Theerayut Toojinda
  • Chanate Malumpong
  • Siwaret ArikitEmail author
Original Article

Abstract

Key message

The QTL-seq approach was used to identify QTLs for spikelet fertility under heat stress in rice. QTLs were detected on chromosomes 1, 2 and 3.

Abstract

Rice is a staple food of more than half of the global population. Rice production is increasingly affected by extreme environmental fluctuations caused by climate change. Increasing temperatures that exceed the optimum temperature adversely affect rice growth and development, especially during reproductive stages. Heat stress during the reproductive stages has a large effect on spikelet fertility; hence, the yield decreases. To sustain rice yields under increasing temperatures, the development of rice varieties for heat tolerance is necessary. In this study, we applied the QTL-seq approach to rapidly identify QTLs for spikelet fertility under heat stress (air temperature of 40–45 °C) based on two DNA pools, each consisting of 25 individual plants that exhibited a heat-tolerant or heat-sensitive phenotype from an F2 population of a cross between M9962 (heat tolerant) and Sinlek (heat sensitive). Three QTLs, qSF1, qSF2 and qSF3, were detected on chromosomes 1, 2 and 3, respectively, according to the highest contrasting SNP index between the two bulks. The QTLs identified in this study were found to overlap or were linked to QTLs previously identified in other crosses using conventional QTL mapping. A few highly abundant and anther-specific genes that contain nonsynonymous variants were identified within the QTLs and were proposed to be potential candidate genes. These genes could be targets in rice breeding programs for heat tolerance.

Keywords

Rice Heat tolerance QTL-seq Bulk-segregant analysis 

Abbreviations

QTL

Quantitative trait loci

SNP

Single-nucleotide polymorphism

InDel

Insertion/deletion

HT

Heat tolerant

HS

Heat sensitive

qSF

QTL of spikelet fertility

kb

Kilobase pair

Mb

Mega base pair

BSA

Bulk-segregant analysis

DNA-seq

DNA sequencing

RNA-seq

RNA sequencing

Notes

Acknowledgements

This work was supported by the Agricultural Research Development Agency (ARDA) (Grant No. PRP5905021150).

Author contribution statement

SW, CM, TT, AV and SA conceived and designed the experiment. PN, SC and VR conducted the experiments. SW and CS analyzed the data. SW, SA and PN wrote the manuscript. SW and SA revised the final version of the paper. All authors approved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

299_2019_2477_MOESM1_ESM.xlsx (19 kb)
Supplementary material 1: Table S1. List of genes annotated within the detected QTLs on chromosomes 1, 2 and 3 and the expression of these genes in the anthers of M9962 and Sinlek. (XLSX 19 kb)

References

  1. Aghamolki MTK, Yusop MK, Oad FC (2014) Heat stress effects on yield parameters of selected rice cultivars at reproductive growth stages. J Food Agric Environ 12:741–746Google Scholar
  2. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106.  https://doi.org/10.1186/gb-2010-11-10-r106 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arikit S, Wanchana S, Khanthong S et al (2019) QTL-seq identifies cooked grain elongation QTLs near soluble starch synthase and starch branching enzymes in rice (Oryza sativa L.). Sci Rep 9:8328.  https://doi.org/10.1038/s41598-019-44856-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buu BC, Ha PTT, Tam BP et al (2014) Quantitative trait loci associated with heat tolerance in rice (Oryza sativa L.). Plant Breed Biotech 2:14–24.  https://doi.org/10.9787/PBB.2014.2.1.014 CrossRefGoogle Scholar
  6. Cheabu S, Moung-Ngam P, Arikit S et al (2018) Effects of heat stress at vegetative and reproductive stages on spikelet fertility. Rice Sci 25:218–226.  https://doi.org/10.1016/j.rsci.2018.06.005 CrossRefGoogle Scholar
  7. Cheabu S, Panichawong N, Rattanametta P et al (2019) Screening for spikelet fertility and validation of heat tolerance in a large rice mutant population. Rice Sci 26:229–238.  https://doi.org/10.1016/j.rsci.2018.08.008 CrossRefGoogle Scholar
  8. Chen G, Zhang Y, Ruan B et al (2018) OsHAK1 controls the vegetative growth and panicle fertility of rice by its effect on potassium-mediated sugar metabolism. Plant Sci 274:261–270.  https://doi.org/10.1016/j.plantsci.2018.05.034 CrossRefPubMedGoogle Scholar
  9. Counce PA, Keisling TC, Mitchell AJ (2000) A uniform, objective, and adaptive system for expressing rice development. Crop Sci 40:436.  https://doi.org/10.2135/cropsci2000.402436x CrossRefGoogle Scholar
  10. Deveshwar P, Bovill WD, Sharma R et al (2011) Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice. BMC Plant Biol 11:78.  https://doi.org/10.1186/1471-2229-11-78 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fu G, Zhang C, Yang Y et al (2015) Male parent plays more important role in heat tolerance in three-line hybrid rice. Rice Sci 22:116–122CrossRefGoogle Scholar
  12. Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Climate Extrem 10:4–10.  https://doi.org/10.1016/j.wace.2015.08.001 CrossRefGoogle Scholar
  13. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551.  https://doi.org/10.1146/annurev-arplant-050213-035715 CrossRefGoogle Scholar
  14. Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128:1329–1342.  https://doi.org/10.1007/s00122-015-2509-x CrossRefPubMedGoogle Scholar
  15. Ishimaru T, Hirabayashi H, Sasaki K et al (2016) Breeding efforts to mitigate damage by heat stress to spikelet sterility and grain quality. Plant Prod Sci 19:12–21.  https://doi.org/10.1080/1343943X.2015.1128113 CrossRefGoogle Scholar
  16. Jagadish SVK, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58:1627–1635.  https://doi.org/10.1093/jxb/erm003 CrossRefPubMedGoogle Scholar
  17. Jagadish SVK, Septiningsih EM, Kohli A et al (2012) Genetic advances in adapting rice to a rapidly changing climate. J Agro Crop Sci 198:360–373.  https://doi.org/10.1111/j.1439-037X.2012.00525.x CrossRefGoogle Scholar
  18. Kilasi NL, Singh J, Vallejos CE et al (2018) Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front Plant Sci 9:1578.  https://doi.org/10.3389/fpls.2018.01578 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kobata T, Ishi H, Iwasaki H (2017) A reduction in spikelet number and fertility causes yield vulnerability in high-yielding rice. Agron J 109:175–184CrossRefGoogle Scholar
  20. Kosugi S, Natsume S, Yoshida K et al (2013) Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data. PLoS One 8:e75402.  https://doi.org/10.1371/journal.pone.0075402 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Krzywinski M, Schein J, Birol I et al (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645.  https://doi.org/10.1101/gr.092759.109 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760.  https://doi.org/10.1093/bioinformatics/btp324 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li H-J, Xue Y, Jia D-J et al (2011) POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. Plant Cell 23:3288–3302.  https://doi.org/10.1105/tpc.111.088914 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lu H, Lin T, Klein J et al (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499.  https://doi.org/10.1007/s00122-014-2313-z CrossRefGoogle Scholar
  25. Luo X, Liu J, Zhao J et al (2018) Rapid mapping of candidate genes for cold tolerance in Oryza rufipogon Griff. by QTL-seq of seedlings. J Integr Agric 17:265–275.  https://doi.org/10.1016/S2095-3119(17)61712-X CrossRefGoogle Scholar
  26. Matsui T, Omasa K, Horie T (2000) High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci 3:430–434.  https://doi.org/10.1626/pps.3.430 CrossRefGoogle Scholar
  27. Matsui T, Omasa K, Horie T (2001) The difference in sterility due to high temperatures during the flowering period among japonica-rice varieties. Plant Prod Sci 4:90–93.  https://doi.org/10.1626/pps.4.90 CrossRefGoogle Scholar
  28. Nishida S, Dissanayaka DMSB, Honda S et al (2017) Identification of genomic regions associated with low phosphorus tolerance injaponica rice (Oryza sativa L.) by QTL-Seq. Soil Sci Plant Nutr 64:1–4.  https://doi.org/10.1080/00380768.2017.1412238 CrossRefGoogle Scholar
  29. Pascual L, Albert E, Sauvage C et al (2016) Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Sci 242:120–130.  https://doi.org/10.1016/j.plantsci.2015.06.017 CrossRefPubMedGoogle Scholar
  30. Patro R, Duggal G, Kingsford C (2015) Accurate, fast, and model-aware transcript expression quantification with Salmon. BioRxiv.  https://doi.org/10.1101/021592 CrossRefGoogle Scholar
  31. Peng S, Huang J, Sheehy JE et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975.  https://doi.org/10.1073/pnas.0403720101 CrossRefPubMedGoogle Scholar
  32. Prasad PVV, Boote KJ, Allen LH et al (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res 95:398–411.  https://doi.org/10.1016/j.fcr.2005.04.008 CrossRefGoogle Scholar
  33. Prasanth VV, Babu, Basava RK et al (2017) Trait and marker associations in oryza nivara and O. rufipogon derived rice lines under two different heat stress conditions. Front Plant Sci 8:1819.  https://doi.org/10.3389/fpls.2017.01819 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Takagi H, Abe A, Yoshida K et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183.  https://doi.org/10.1111/tpj.12105 CrossRefPubMedGoogle Scholar
  35. Tazib T, Kobayashi Y, Koyama H, Matsui T (2015) QTL analyses for anther length and dehiscence at flowering as traits for the tolerance of extreme temperatures in rice (Oryza sativa L.). Euphytica 203:629–642.  https://doi.org/10.1007/s10681-014-1291-1 CrossRefGoogle Scholar
  36. Wei H, Liu J, Wang Y et al (2013) A dominant major locus in chromosome 9 of rice (Oryza sativa L.) confers tolerance to 48 °C high temperature at seedling stage. J Hered 104:287–294.  https://doi.org/10.1093/jhered/ess103 CrossRefPubMedGoogle Scholar
  37. Yaobin Q, Peng C, Yichen C et al (2018) QTL-Seq identified a major QTL for grain length and weight in rice using near isogenic F2 population. Rice Sci 25:121–131.  https://doi.org/10.1016/j.rsci.2018.04.001 CrossRefGoogle Scholar
  38. Ye C, Argayoso MA, Redoña ED et al (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41.  https://doi.org/10.1111/j.1439-0523.2011.01924.x CrossRefGoogle Scholar
  39. Ye C, Tenorio FA, Argayoso MA et al (2015) Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet 16:41.  https://doi.org/10.1186/s12863-015-0199-7 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zhao Z, Jiang L, Xiao Y et al (2006) Identification of QTLs for heat tolerance at the booting stage in rice (Oryza saliva L.). Zuo wu xue bao 32:640–644Google Scholar
  41. Zhao L, Lei J, Huang Y et al (2016) Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breed Sci 66:358–366.  https://doi.org/10.1270/jsbbs.15084 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhu S, Huang R, Wai HP et al (2017) Mapping quantitative trait loci for heat tolerance at the booting stage using chromosomal segment substitution lines in rice. Physiol Mol Biol Plants 23:817–825.  https://doi.org/10.1007/s12298-017-0465-4 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Phakchana Nubankoh
    • 1
  • Samart Wanchana
    • 2
  • Chatree Saensuk
    • 3
  • Vinitchan Ruanjaichon
    • 2
  • Sulaiman Cheabu
    • 4
  • Apichart Vanavichit
    • 3
    • 5
  • Theerayut Toojinda
    • 2
  • Chanate Malumpong
    • 5
  • Siwaret Arikit
    • 3
    • 5
    Email author
  1. 1.Faculty of Agriculture at Kamphaeng SaenKasetsart University Kamphaeng Saen CampusNakhon PathomThailand
  2. 2.National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Khlong LuangThailand
  3. 3.Rice Science CenterKasetsart University Kamphaeng Saen CampusNakhon PathomThailand
  4. 4.Faculty of AgriculturePrincess of Naradhiwas UniversityNaradhiwasThailand
  5. 5.Department of Agronomy, Faculty of Agriculture at Kamphaeng SaenKasetsart University Kamphaeng Saen CampusNakhon PathomThailand

Personalised recommendations