Plant Cell Reports

, Volume 38, Issue 12, pp 1501–1514 | Cite as

Overexpression of CrCOMT from Carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana

  • Kun Zhang
  • Huiting Cui
  • Shihao Cao
  • Li Yan
  • Mingna LiEmail author
  • Yan SunEmail author
Original Article


Key message

CrCOMT, a COMT gene in Carex rigescens, was verified to enhance salt stress tolerance in transgenic Arabidopsis.


High salinity severely restricts plant growth and development while melatonin can alleviate salt damage. Caffeic acid O-methyltransferase (COMT) plays an important role in regulating plant growth, development, and stress responses. COMT could also participate in melatonin biosynthesis. The objective of this study was to identify CrCOMT from Carex rigescens (Franch.) V. Krecz, a stress-tolerant grass species with a widespread distribution in north China, and to determine its physiological functions and regulatory mechanisms that impart tolerance to salt stress. The results showed that the transcription of CrCOMT exhibited different expression patterns under salt, drought, and ABA treatments. Transgenic Arabidopsis with the overexpression of CrCOMT exhibited improved growth and physiological performance under salt stress, such as higher lateral root numbers, proline level, and chlorophyll content, than in the wild type (WT). Overexpression of CrCOMT also increased dehydration tolerance in Arabidopsis. The transcription of salt response genes was more highly activated in transgenic plants than in the WT under salt stress conditions. In addition, the melatonin content in transgenic plants was higher than that in the WT after stress treatment. Taken together, our results indicated that CrCOMT may positively regulate stress responses and melatonin synthesis under salt stress.


Carex rigescens COMT Transgenic Arabidopsis Salt stress Melatonin 



This work was supported by the National Natural Science Foundation of China (Grant nos. 31872996 and 31472139). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author contribution statement

KZ and YS carried out the experimental design. KZ, HC, SC, LY, and ML performed the experiments and prepared the manuscript and coordinated its revision. ML and YS read and revised the manuscript. All authors provided helpful discussions and approved its final version.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.

Supplementary material

299_2019_2461_MOESM1_ESM.tif (138 kb)
Supplementary material S1. Transcription levels of CrCOMT in twelve different overexpression Arabidopsis lines. qRT-PCR analysis of CrCOMT expression in twelve T3 transgenic Arabidopsis. The Atactin7 gene was used as internal controls. OE9 and OE15 performed the high expression level. All the data represent mean ± SE for three biological replicates (TIFF 137 kb)
299_2019_2461_MOESM2_ESM.tif (1.5 mb)
Supplementary material S2. PCR product in agarose gel electrophoresis of RACE results. (a) The CrCOMT amplified RACE products were showed with agarose gel electrophoresis. (b) The full length of CrCOMT amplified product was showed with agarose gel electrophoresis. Marker:2000bp (TIFF 1528 kb)
299_2019_2461_MOESM3_ESM.tif (479 kb)
Supplementary material S3. Protein hydropathy, isoelectric point and molecular mass prediction of CrCOMT. (a) CrCOMT protein hydropathy was determined by constructing hydropathy plots with the Kyte and Doolittle algorithm ( (b) CrCOMT protein isoelectric point and molecular mass prediction were estimated using the calculate pI/Mw tool ( (TIFF 478 kb)
299_2019_2461_MOESM4_ESM.xlsx (10 kb)
Supplementary material 4 (XLSX 10 kb)
299_2019_2461_MOESM5_ESM.docx (17 kb)
Supplementary material 5 Table S2. The cis-acting element analysis of COMT promoter in different species. The cis-element analysis of COMT promoters in four sequenced species (Arabidopsis thaliana, Glycine max, Oryza sativa and Zea mays) and C. rigescens (1-1999 from the transcription initiation site) was showed using the Plant CARE website. ( (DOCX 17 kb)
299_2019_2461_MOESM6_ESM.docx (19 kb)
Supplementary material 6 (DOCX 19 kb)
299_2019_2461_MOESM7_ESM.docx (15 kb)
Supplementary material 7 (DOCX 14 kb)
299_2019_2461_MOESM8_ESM.docx (17 kb)
Supplementary material 8 (DOCX 17 kb)


  1. Ahammed GJ, Xu W, Liu A, Chen S (2018) COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity and electron transport efficiency in tomato. Front Plant Sci 9:998CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allegra M, Reiter R, Tan DX, Gentile C, Tesoriere L, Livrea M (2003) The chemistry of melatonin’s interaction with reactive species. J Pineal Res 34:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnao M, Hernández-Ruiz J (2009) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 46:58–63CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arzani A (2008) Improving salinity tolerance in crop plants: a biotechnological view. In Vitro Cell Dev Biol Plant 44:373–383CrossRefGoogle Scholar
  5. Badowiec A, Weidner S (2014) Proteomic changes in the roots of germinating Phaseolus vulgaris seeds in response to chilling stress and post-stress recovery. J Plant Physiol 171:389–398CrossRefPubMedPubMedCentralGoogle Scholar
  6. Badowiec A, Swigonska S, Weidner S (2013) Changes in the protein patterns in pea (Pisum sativum L.) roots under the influence of long-and short-term chilling stress and post-stress recovery. Plant Physiol Biochem 71:315–324CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baier M, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28:1012–1020CrossRefGoogle Scholar
  8. Byeon Y, Lee HY, Lee K, Back K (2014a) Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. J Pineal Res 57:219–227CrossRefPubMedPubMedCentralGoogle Scholar
  9. Byeon Y, Lee HY, Lee K, Park S, Back K (2014b) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114CrossRefPubMedPubMedCentralGoogle Scholar
  10. Byeon Y, Choi G-H, Lee HY, Back K (2015a) Melatonin biosynthesis requires N-acetylserotonin methyltransferase activity of caffeic acid O-methyltransferase in rice. J Exp Bot 66:6917–6925CrossRefPubMedPubMedCentralGoogle Scholar
  11. Byeon Y, Lee HY, Back K (2015b) Chloroplastic and cytoplasmic overexpression of sheep serotonin N-acetyltransferase in transgenic rice plants is associated with low melatonin production despite high enzyme activity. J Pineal Res 58:461–469CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cai SY, Zhang Y, Xu YP, Qi ZY, Li MQ, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Reiter RJ (2017) HsfA1a upregulates melatonin biosynthesis to confer cadmium tolerance in tomato plants. J Pineal Res 62:e12387CrossRefGoogle Scholar
  13. Chandran D, Sharopova N, Ivashuta S, Gantt JS, VandenBosch KA, Samac DA (2008) Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228:151–166CrossRefPubMedPubMedCentralGoogle Scholar
  14. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743PubMedPubMedCentralGoogle Scholar
  15. Daudi A, O’Brien JA (2012) Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio Protoc 2:e263CrossRefPubMedPubMedCentralGoogle Scholar
  16. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci 108:3803–3808CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Barriere Y (2003) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989CrossRefPubMedPubMedCentralGoogle Scholar
  19. Guillaumie S, Goffner D, Barbier O, Martinant J-P, Pichon M, Barrière Y (2008) Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants. BMC Plant Biol 8:71CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hasanuzzaman M, Nahar K, Alam M, Bhowmik PC, Hossain M, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Biomed Res Int 2014:1–12Google Scholar
  22. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198CrossRefPubMedPubMedCentralGoogle Scholar
  23. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300CrossRefPubMedPubMedCentralGoogle Scholar
  24. Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146:832–838CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ibrahim RK, Bruneau A, Bantignies B (1998) Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36:1–10CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273CrossRefGoogle Scholar
  27. Kang K, Kong K, Park S, Natsagdorj U, Kim YS, Back K (2011) Molecular cloning of a plant N-acetylserotonin methyltransferase and its expression characteristics in rice. J Pineal Res 50:304–309CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kang K, Lee K, Park S, Byeon Y, Back K (2013) Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J Pineal Res 55:7–13CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ke Q, Kim HS, Wang Z, Ji CY, Jeong JC, Lee HS, Choi YI, Xu B, Deng X, Yun DJ (2017) Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar. Plant Biotechnol J 15:331–343CrossRefPubMedPubMedCentralGoogle Scholar
  30. Khakdan F, Nasiri J, Ranjbar M, Alizadeh H (2017) Water deficit stress fluctuates expression profiles of 4Cl, C3H, COMT, CVOMT and EOMT genes involved in the biosynthetic pathway of volatile phenylpropanoids alongside accumulation of methylchavicol and methyleugenol in different Iranian cultivars of basil. J Plant Physiol 218:74–83CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim W-Y, Ali Z, Park HJ, Park SJ, Cha J-Y, Perez-Hormaeche J, Quintero FJ, Shin G, Kim MR, Qiang Z (2013) Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat Commun 4:1352CrossRefPubMedPubMedCentralGoogle Scholar
  32. Knudson LL, Tibbitts TW, Edwards GE (1977) Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol 60:606–608CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kostopoulou Z, Therios I, Roumeliotis E, Kanellis AK, Molassiotis A (2015) Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiol Biochem 86:155–165CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lee HY, Back K (2018) Melatonin plays a pivotal role in conferring tolerance against endoplasmic reticulum stress via mitogen-activated protein kinases and bZIP60 in Arabidopsis thaliana. Melatonin Res 1:94–108CrossRefGoogle Scholar
  36. Lee JE, Vogt T, Hause B, Löbler M (1997) Methyl jasmonate induces an O-Methyltransferase in barley1. Plant Cell Physiol 38:851–862CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lee HY, Byeon Y, Lee K, Lee HJ, Back K (2014) Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. J Pineal Res 57:418–426CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lee K, Choi GH, Back K (2017) Cadmium-induced melatonin synthesis in rice requires light, hydrogen peroxide, and nitric oxide: key regulatory roles for tryptophan decarboxylase and caffeic acid O-methyltransferase. J Pineal Res 63:e12441CrossRefGoogle Scholar
  39. Li X-J, Yang M-F, Chen H, Qu L-Q, Chen F, Shen S-H (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochimica et Biophysica Acta 1804:929–940CrossRefPubMedPubMedCentralGoogle Scholar
  40. Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W (2012) Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158:1279–1292CrossRefPubMedPubMedCentralGoogle Scholar
  41. Li W, Lu J, Lu K, Yuan J, Huang J, Du H, Li J (2016) Cloning and phylogenetic analysis of Brassica Napus L. Caffeic acid O-Methyltransferase 1 gene family and its expression pattern under drought stress. PLoS One 11:e0165975CrossRefPubMedPubMedCentralGoogle Scholar
  42. Li J, Li Y, Yin Z, Jiang J, Zhang M, Guo X, Ye Z, Zhao Y, Xiong H, Zhang Z (2017a) Os ASR 5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnol J 15:183–196CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li M, Zhang K, Long R, Sun Y, Kang J, Zhang T, Cao S (2017b) iTRAQ-based comparative proteomic analysis reveals tissue-specific and novel early-stage molecular mechanisms of salt stress response in Carex rigescens. Environ Exp Bot 143:99–114CrossRefGoogle Scholar
  44. Li M, Zhang K, Sun Y, Cui H, Cao S, Yan L, Xu M (2018) Growth, physiology, and transcriptional analysis of two contrasting Carex rigescens genotypes under salt stress reveals salt-tolerance mechanisms. J Plant Physiol 229:77–88CrossRefPubMedPubMedCentralGoogle Scholar
  45. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25:402–408CrossRefGoogle Scholar
  46. Ma WL, Yang XL, Yu DN (1990) A taxonomic discussion on genus Carex L. J Inner Mong Teach Univ (Nat Sci Ed):38–46 (In Chinese)Google Scholar
  47. Ma WL, Han LB, Luo JC (2001) A new lawn plant resource genus Carex L. Pratacultural Sci 18:43–45 (In Chinese) Google Scholar
  48. Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17:2255–2270CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mongkolsiriwatana C, Pongtongkam P, Peyachoknagul S (2009) In silico promoter analysis of photoperiod-responsive genes identified by DNA microarray in rice (Oryza sativa L.). Kasetsart J (Nat Sci) 43:164–177Google Scholar
  50. Mukherjee S, Choudhuri M (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170CrossRefGoogle Scholar
  51. Nakayama K, Okawa K, Kakizaki T, Inaba T (2008) Evaluation of the protective activities of a late embryogenesis abundant (LEA) related protein, Cor15am, during various stresses in vitro. Biosci Biotechnol Biochem 72:1642–1645CrossRefPubMedPubMedCentralGoogle Scholar
  52. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148CrossRefPubMedPubMedCentralGoogle Scholar
  53. Nisa Z-u, Mallano AI, Yu Y, Chen C, Duan X, Amanullah S, Kousar A, Baloch AW, Sun X, Tabys D (2017) GsSNAP33, a novel Glycine soja SNAP25-type protein gene: improvement of plant salt and drought tolerances in transgenic Arabidopsis thaliana. Plant Physiol Biochem 119:9–20CrossRefPubMedPubMedCentralGoogle Scholar
  54. Park S, Byeon Y, Back K (2013) Functional analyses of three ASMT gene family members in rice plants. J Pineal Res 55:409–415PubMedPubMedCentralGoogle Scholar
  55. Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro H-W, Ranieri A, Abdelly C, Smaoui A (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Biores Technol 101:6822–6828CrossRefGoogle Scholar
  56. Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and suppressor of overexpression of constans1. Plant Physiol 162:1706–1719CrossRefPubMedPubMedCentralGoogle Scholar
  57. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shi H, Qian Y, Tan DX, Reiter RJ, He C (2015) Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J Pineal Res 59:334–342CrossRefPubMedPubMedCentralGoogle Scholar
  59. Shinde H, Dudhate A, Tsugama D, Gupta SK, Liu S, Takano T (2019) Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Plant Physiol Biochem 135:546–553CrossRefPubMedPubMedCentralGoogle Scholar
  60. Starr JR, Janzen FH, Ford BA (2015) Three new, early diverging Carex (Cariceae, Cyperaceae) lineages from East and Southeast Asia with important evolutionary and biogeographic implications. Mol Phylogenet Evol 88:105–120CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sun X, Luo X, Sun M, Chen C, Ding X, Wang X, Yang S, Yu Q, Jia B, Ji W (2013a) A Glycine soja 14-3-3 protein GsGF14o participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol 55:99–118CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sun X, Sun M, Luo X, Ding X, Ji W, Cai H, Bai X, Liu X, Zhu Y (2013b) A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta 237:1527–1545CrossRefPubMedPubMedCentralGoogle Scholar
  63. Swinnen G, Goossens A, Pauwels L (2016) Lessons from domestication: targeting cis-regulatory elements for crop improvement. Trends Plant Sci 21:506–515CrossRefPubMedPubMedCentralGoogle Scholar
  64. Szafrańska K, Glińska S, Janas KM (2012) Changes in the nature of phenolic deposits after re-warming as a result of melatonin pre-sowing treatment of Vigna radiata seeds. J Plant Physiol 169:34–40CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tan D-X, Manchester LC, Reiter RJ, Plummer BF, Limson J, Weintraub ST, Qi W (2000) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radical Bio Med 29:1177–1185CrossRefGoogle Scholar
  67. Tan D-X, Manchester L, Esteban-Zubero E, Zhou Z, Reiter R (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886–18906CrossRefPubMedPubMedCentralGoogle Scholar
  68. Toquin V, Grausem B, Geoffroy P, Legrand M (2003) Structure of the tobacco caffeic acid O-methyltransferase (COMT) II gene: identification of promoter sequences involved in gene inducibility by various stimuli. Plant Mol Biol 52:495–509CrossRefPubMedPubMedCentralGoogle Scholar
  69. Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:S153–S164CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wang Y, Liu G-J, Yan X-F, Wei Z-G, Xu Z-R (2011) MeJA-inducible expression of the heterologous JAZ2 promoter from Arabidopsis in Populus trichocarpa protoplasts. J Plant Dis Prot 118:69–74CrossRefGoogle Scholar
  71. Wang P, Sun X, Wang N, Tan DX, Ma F (2015) Melatonin enhances the occurrence of autophagy induced by oxidative stress in Arabidopsis seedlings. J Pineal Res 58:479–489CrossRefPubMedPubMedCentralGoogle Scholar
  72. Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS One 9:e93462CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wei W, Li Q-T, Chu Y-N, Reiter RJ, Yu X-M, Zhu D-H, Zhang W-K, Ma B, Lin Q, Zhang J-S (2014) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707CrossRefPubMedPubMedCentralGoogle Scholar
  74. Xue H, Sha W, Ni HW (2005) General situation of studies on Carex L. J Qiqihar Univ 21:81–86 (In Chinese) Google Scholar
  75. Yoshida T, Fernie AR (2018) Remote control of transpiration via ABA. Trends Plant Sci 23:755–758CrossRefPubMedPubMedCentralGoogle Scholar
  76. Yu X, Liu Y, Wang S, Tao Y, Wang Z, Shu Y, Peng H, Mijiti A, Wang Z, Zhang H (2016) CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. Plant Cell Rep 35:613–627CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yu T, Zhao W, Fu J, Liu Y-W, Chen M, Zhou Y, Ma Y-Z, Xu Z-S, Xi Y (2018) Genome-wide analysis of the CDPK family in millet and determination of SiCDPK24 functions in drought stress. Front Plant Sci 9:651CrossRefPubMedPubMedCentralGoogle Scholar
  78. Zhang N, Zhao B, Zhang HJ, Weeda S, Yang C, Yang ZC, Ren S, Guo YD (2013) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54:15–23CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zhang N, Sun Q, Zhang H, Cao Y, Weeda S, Ren S, Guo Y-D (2014) Roles of melatonin in abiotic stress resistance in plants. J Exp Bot 66:647–656CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhang J, Shi Y, Zhang X, Du H, Xu B, Huang B (2017) Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 138:36–45CrossRefGoogle Scholar
  81. Zhang K, Li M, Cao S, Sun Y, Long R, Kang J, Yan L, Cui H (2019) Selection and validation of reference genes for target gene analysis with quantitative real-time PCR in the leaves and roots of Carex rigescens under abiotic stress. Ecotoxicol Environ Saf 168:127–137CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhao Q, Zhang H, Wang T, Chen S, Dai S (2013) Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteom 82:230–253CrossRefGoogle Scholar
  83. Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71CrossRefGoogle Scholar
  84. Zhu Y-N, Shi D-Q, Ruan M-B, Zhang L-L, Meng Z-H, Liu J, Yang W-C (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 8:e80218CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhu Y, Wang B, Tang K, Hsu C-C, Xie S, Du H, Yang Y, Tao WA, Zhu J-K (2017) An Arabidopsis nucleoporin NUP85 modulates plant responses to ABA and salt stress. PLoS Genet 13:e1007124CrossRefPubMedPubMedCentralGoogle Scholar
  86. Zubieta C, He X-Z, Dixon RA, Noel JP (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Mol Biol 8:271CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Grassland Science and TechnologyChina Agricultural UniversityBeijingPeople’s Republic of China
  2. 2.Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations