Advertisement

Plant Cell Reports

, Volume 39, Issue 1, pp 3–17 | Cite as

Root exudates: from plant to rhizosphere and beyond

  • Vicente Vives-Peris
  • Carlos de Ollas
  • Aurelio Gómez-Cadenas
  • Rosa María Pérez-ClementeEmail author
Review

Abstract

Key message

This article describes the composition of root exudates, how these metabolites are released to the rhizosphere and their importance in the recruitment of beneficial microbiota that alleviate plant stress.

Abstract

Metabolites secreted to the rhizosphere by roots are involved in several processes. By modulating the composition of the root exudates, plants can modify soil properties to adapt and ensure their survival under adverse conditions. They use several strategies such as (1) changing soil pH to solubilize nutrients into assimilable forms, (2) chelating toxic compounds, (3) attracting beneficial microbiota, or (4) releasing toxic substances for pathogens, etc. In this work, the composition of root exudates as well as the different mechanisms of root exudation have been reviewed. Existing methodologies to collect root exudates, indicating their advantages and disadvantages, are also described. Factors affecting root exudation have been exposed, including physical, chemical, and biological agents which can produce qualitative and quantitative changes in exudate composition. Finally, since root exudates play an important role in the recruitment of mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR), the mechanisms of interaction between plants and the beneficial microbiota have been highlighted.

Keywords

Mycorrhiza Rhizosphere Rhizobacteria Root exudates 

Abbreviations

AACT

Acetoacetyl CoA thiolase

ABC

ATP-binding cassette

ACC

1-Aminocyclopropane-1-carboxylate

AMF

Arbuscular mycorrhizal fungi

ATH

Arabidopsis Twinkle homolog

ATP

Adenosine triphosphate

ALMT

Aluminium-activated-malate transporters

CPT

Camptothecin

DTX

Detoxification

DVS

Dual vessel system

ECM

Ectomycorrhiza

FRDL

Ferric reductase defective like

GC–MS

Gas chromatography coupled to mass spectrometry

JA

Jasmonic acid

LC–MS

Liquid chromatography coupled to mass spectrometry

MATE

Multidrug and toxic compound extrusion

MRP

Multidrug resistance-associated protein

NBD

Nucleotide-binding domains

NO

Nitric oxide

PDR

Pleiotropic drug resistance

PEZ

Phenolics efflux zero

PGP

P-glycoprotein

PGPR

Plant growth promoting rhizobacteria

QUAC

Quick anion channels

RITA

Recipient à Immersion Temporaire Automatique

R-type

Rapid-type

SA

Salicylic acid

S-type

Slow-type

SLAC

Slow anion channels

TIS

Temporary immersion system

TMD

Transmembrane domains

VAM

Vesicular arbuscular mycorrhizae

Notes

Acknowledgements

The work published in this article has been supported by the Spanish Ministerio de Economia y Competitividad (MINECO) and Universitat Jaume I through Grant nos. AGL2016-76574-R and UJI-B2016-23, respectively. V.V.-P. was recipient of a predoctoral contract from the Universitat Jaume I (PREDOC/2013/31).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aira M, Gómez-Brandón M, Lazcano C, Bååth E, Domínguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281.  https://doi.org/10.1016/j.soilbio.2010.08.029 CrossRefGoogle Scholar
  2. Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact 6:239–246.  https://doi.org/10.1080/17429145.2010.545147 CrossRefGoogle Scholar
  3. Alvard D, Cote F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation—effects of temporary immersion of explants. Plant Cell Tissue Organ Cult 32:55–60CrossRefGoogle Scholar
  4. Amdoun R, Khelifi L, Khelifi-Slaoui M, Amroune S, Benyoussef EH, Thi DV, Assaf-Ducrocq C, Gontier E (2009) Influence of minerals and elicitation on Datura stramonium L. tropane alkaloid production: modelization of the in vitro biochemical response. Plant Sci 177:81–87.  https://doi.org/10.1016/j.plantsci.2009.03.016 CrossRefGoogle Scholar
  5. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681.  https://doi.org/10.1111/j.1365-3040.2009.01926.x CrossRefGoogle Scholar
  6. Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Peña C, Jasinki M, Santelia D, Martinoia W, Summer LW, Banta LM, Stermitz F, Vivanco JM (2008a) Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol 146:762–771.  https://doi.org/10.1104/pp.107.109587 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Badri DV, Loyola-Vargas VM, Du J, Stermitz FR, Broeckling CD, Iglesias-Andreu L, Vivanco JM (2008b) Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytol 179:209–223.  https://doi.org/10.1111/j.1469-8137.2008.02458.x CrossRefPubMedGoogle Scholar
  8. Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017.  https://doi.org/10.1104/pp.109.147462 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Badri DV, Loyola-Vargas VM, Broeckling CD, Vivanco JM (2010) Root secretion of phytochemicals in Arabidopsis is predominantly not influenced by diurnal rhythms. Mol Plant 3:491–498.  https://doi.org/10.1093/mp/ssq004 CrossRefPubMedGoogle Scholar
  10. Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512.  https://doi.org/10.1074/jbc.M112.433300 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98.  https://doi.org/10.1016/j.tplants.2013.11.006 CrossRefGoogle Scholar
  12. Bais HP, Walker TS, Schweizer Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995.  https://doi.org/10.1016/S0981-9428(02)01460-2 CrossRefGoogle Scholar
  13. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266.  https://doi.org/10.1146/annurev.arplant.57.032905.105159 CrossRefGoogle Scholar
  14. Baptist F, Aranjuelo I, Legay N, Lopez-Sangil L, Molero G, Rovira P, Nogués S (2015) Rhizodeposition of organic carbon by plants with contrasting traits for resource acquisition: responses to different fertility regimes. Plant Soil 394:391–406.  https://doi.org/10.1007/s11104-015-2531-4 CrossRefGoogle Scholar
  15. Barbas C, García JAL, Gutiérrez Mañero FJ (1999) Separation and identification of organic acids in root exudates of Lupinus luteus by capillary zone electrophoresis. Phytochem Anal 10:55–59.  https://doi.org/10.1002/(SICI)1099-1565(199903/04)10:2%3c55:AID-PCA437%3e3.0.CO;2-I CrossRefGoogle Scholar
  16. Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20.  https://doi.org/10.9734/AJEA/2011/002 CrossRefGoogle Scholar
  17. Bharti N, Pandey SS, Barnawal D, Kumar V, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768.  https://doi.org/10.1038/srep34768 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bompadre MJ, Silvani VA, Bidondo LF, Ríos de Molina MDC, Colombo RP, Pardo AG, Godeas AM (2014) Arbuscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growing under different irrigation conditions. Botany 92:187–193.  https://doi.org/10.1139/cjb-2013-0169 CrossRefGoogle Scholar
  19. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48.  https://doi.org/10.1038/ncomms1046 CrossRefPubMedGoogle Scholar
  20. Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495.  https://doi.org/10.1017/S1464793103006316 CrossRefPubMedGoogle Scholar
  21. Calvo-Polanco M, Molina S, Zamarreño AM, García-Mina JM, Aroca R (2014) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029.  https://doi.org/10.1093/pcp/pcu035 CrossRefPubMedGoogle Scholar
  22. Cardillo AB, Otálvaro AÁM, Busto VD, Talou JR, Velásquez LME, Giulietti AM (2010) Scopolamine, anisodamine and hyoscyamine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochem 45:1577–1581.  https://doi.org/10.1016/j.procbio.2010.06.002 CrossRefGoogle Scholar
  23. Carvalhais LC, Dennis PG, Fedoseyenko D, Jajirezaei MR, Borriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174:3–11.  https://doi.org/10.1002/jpln.201000085 CrossRefGoogle Scholar
  24. Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8:e55731.  https://doi.org/10.1371/journal.pone.0055731 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cheng F, Cheng Z (2015) Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci 6:1020.  https://doi.org/10.3389/fpls.2015.01020 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Condori J, Sivakumar G, Hubstenberger J, Dolan MC, Sobolev VS, Medina-Bolivar F (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiol Biochem 48:310–318.  https://doi.org/10.1016/j.plaphy.2010.01.008 CrossRefPubMedGoogle Scholar
  27. Czarnota MA, Rimando AM, Weston LA (2003) Evaluation of root exudates of seven sorghum accessions. J Chem Ecol 29:2073–2083.  https://doi.org/10.1023/A:1025634402071 CrossRefPubMedGoogle Scholar
  28. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47.  https://doi.org/10.1023/A:1020809400075 CrossRefGoogle Scholar
  29. Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena J, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493.  https://doi.org/10.1007/s11104-009-0127-6 CrossRefGoogle Scholar
  30. Dardanelli MS, de Córdoba FJF, Estévez J, Contreras R, Cubo MT, Rodríguez-Carvajal MA, Gil-Serrano AM, López-Baena FJ, Bellogín R, Manayni H, Ollero FJ, Megías M (2012) Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum. Appl Soil Ecol 57:31–38.  https://doi.org/10.1016/j.apsoil.2012.01.005 CrossRefGoogle Scholar
  31. Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581:2255–2262.  https://doi.org/10.1016/j.febslet.2007.03.057 CrossRefPubMedGoogle Scholar
  32. Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327.  https://doi.org/10.1111/j.1574-6941.2010.00860.x CrossRefGoogle Scholar
  33. Dessaux Y, Grandclément C, Faure D (2018) Engineering the rhizosphere. Trends Plant Sci 21(3):266–278.  https://doi.org/10.1016/j.tplants.2016.01.002 CrossRefGoogle Scholar
  34. Dreyer I, Gomez-Porras JL, Riaño-Pachón DM, Hedrich R, Geiger D (2012) Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs). Front Plant Sci 3:263.  https://doi.org/10.3389/fpls.2012.00263 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dundek P, Holík L, Rohlík T, Vranová V, Rejšek K, Formánek P (2011) Methods of plant root exudate analysis: a review. Acta Univ Agric Silvic Mendelianae Brun 59:241–246.  https://doi.org/10.11118/actaun201159030241 CrossRefGoogle Scholar
  36. Georgiev M, Heinrich M, Kerns G, Bley T, Pavlov A (2006) Production of iridoids and phenolics by transformed Harpagophytum procumbens root cultures. Eng Life Sci 6:593–596.  https://doi.org/10.1002/elsc.200620160 CrossRefGoogle Scholar
  37. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185.  https://doi.org/10.1007/s00253-007-0856-5 CrossRefGoogle Scholar
  38. Georgiev V, Schumann A, Pavlov A, Bley T (2014) Temporary immersion systems in plant biotechnology. Eng Life Sci 14:607–621.  https://doi.org/10.1002/elsc.201300166 CrossRefGoogle Scholar
  39. Glinwood R, Pettersson J, Ahmed E, Ninkovic V, Birkett M, Picket J (2003) Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens). J Chem Ecol 29:261–274.  https://doi.org/10.1023/A:1022687025416 CrossRefPubMedGoogle Scholar
  40. Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17.  https://doi.org/10.1016/S0981-9428(00)01212-2 CrossRefGoogle Scholar
  41. Grover M, Madhubala R, Ali SZ, Yadav SK, Venkateswarlu B (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54:951–961.  https://doi.org/10.1002/jobm.201300250 CrossRefPubMedGoogle Scholar
  42. Gruber BD, Delhaize E, Richardson AE, Roessner U, James RA, Howitt SM, Ryan PR (2011) Characterisation of HvALMT1 function in transgenic barley plants. Funct Plant Biol 38:163–175.  https://doi.org/10.1071/FP10140 CrossRefGoogle Scholar
  43. Guerrieri E, Poppy GM, Powell W, Rao R, Pennacchio F (2002) Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 28:1703–1715.  https://doi.org/10.1023/A:1020553531658 CrossRefPubMedGoogle Scholar
  44. Haghighi M, Mozafariyan M, Abdolahipour B (2015) Effect of cucumber mycorrhiza inoculation under low and high root temperature grown on hydroponic conditions. J Crop Sci Biotechnol 18:89–96.  https://doi.org/10.1007/s12892-014-0083-4 CrossRefGoogle Scholar
  45. Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80.  https://doi.org/10.1016/j.soilbio.2014.06.017 CrossRefGoogle Scholar
  46. Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444.  https://doi.org/10.1093/jxb/err430 CrossRefPubMedGoogle Scholar
  47. Henry A, Doucette W, Norton J, Bugbee B (2007) Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J Environ Qual 36:904–912.  https://doi.org/10.2134/jeq2006.0425sc CrossRefPubMedGoogle Scholar
  48. Huang YM, Zou YN, Wu QS (2017) Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange. Sci Rep 7:42335.  https://doi.org/10.1038/srep42335 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hughes M, Donnelly C, Crozier A, Wheeler CT (1999) Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Can J Bot 77:1311–1315.  https://doi.org/10.1139/b99-077 CrossRefGoogle Scholar
  50. Inceoǧlu Ö, Salles JF, van Overbeek L, van Elsas JD (2010) Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl Environ Microbiol 76:3675–3684.  https://doi.org/10.1128/AEM.00040-10 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci USA 104:9900–9905.  https://doi.org/10.1073/pnas.0700117104 CrossRefPubMedGoogle Scholar
  52. Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Li SS, Jing YX (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805.  https://doi.org/10.1038/srep21805 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jones PM, George AM (2002) Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc Natl Acad Sci 99:12639–12644.  https://doi.org/10.1073/pnas.152439599 CrossRefPubMedGoogle Scholar
  54. Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33.  https://doi.org/10.1007/s11104-009-9925-0 CrossRefGoogle Scholar
  55. Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arab B 9:e0153.  https://doi.org/10.1199/tab.0153 CrossRefGoogle Scholar
  56. Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, Hamayun M, Lee IJ (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682.  https://doi.org/10.1080/17429145.2014.894587 CrossRefGoogle Scholar
  57. Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria × ananassa). Hortic Sci 48:563–567Google Scholar
  58. Kato-Noguchi H (2004) Allelopathic substance in rice root exudates: rediscovery of momilactone B as an allelochemical. J Plant Physiol 161:271–276.  https://doi.org/10.1078/0176-1617-01188 CrossRefGoogle Scholar
  59. Khorassani R, Hettwer U, Ratzinger A, Steingrobe B, Karlovsky P, Claassen N (2011) Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus. BMC Plant Biol 11:121.  https://doi.org/10.1186/1471-2229-11-121 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kitazawa H, Asao T, Ban T, Pramanik MHR, Hosoki T (2005) Autotoxicity of root exudates from strawberry in hydroponic culture. J Hortic Sci Biotechnol 80:677–680.  https://doi.org/10.1080/14620316.2005.11511997 CrossRefGoogle Scholar
  61. Kobayashi Y, Lakshmanan V, Kobayashi Y, Asai M, Iuchi S, Kobayashi M, Bais HP, Koyama H (2013) Overexpression of AtALMT1 in the A. thaliana ecotype Columbia results in enhanced Al-activated malate excretion and beneficial bacterium recruitment. Plant Signal Behav 8:e25565.  https://doi.org/10.4161/psb.25565 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Kuijken RCP, Snel JFH, Heddes MM, Bouwmeester HJ, Marcelis LFM (2015) The importance of a sterile rhizosphere when phenotyping for root exudation. Plant Soil 387:131–142.  https://doi.org/10.1007/s11104-014-2283-6 CrossRefGoogle Scholar
  63. Kuźma Ł, Bruchajzer E, Wysokińska H (2009) Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme Microb Technol 44:406–410.  https://doi.org/10.1016/j.enzmictec.2009.01.005 CrossRefGoogle Scholar
  64. Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587.  https://doi.org/10.1007/s11103-015-0417-8 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368.  https://doi.org/10.1074/jbc.M108777200 CrossRefPubMedGoogle Scholar
  66. Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208.  https://doi.org/10.5423/PPJ.SI.02.2013.0021 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ling N, Zhang W, Wang D, Mao J, Huang Q, Guo S, Shen Q (2013) Root exudates from grafted-root watermelon showed a certain contribution in inhibiting Fusarium oxysporum f. sp. niveum. PLoS One 8:e63383.  https://doi.org/10.1371/journal.pone.0063383 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Liu CZ, Wang YC, Ouyang F, Ye HC, Li GF (1997) Production of artemisinin by hairy root cultures of Artemisia annua L. Biotechnol Lett 19:927–929.  https://doi.org/10.1023/A:1018362309677 CrossRefGoogle Scholar
  69. Liu J, Magalhaes JV, Shaff J, Kochian LV (2009a) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399.  https://doi.org/10.1111/j.1365-313X.2008.03696.x CrossRefPubMedGoogle Scholar
  70. Liu N, Zhou B, Zhao X, Lu B, Li Y, Hao J (2009b) Grafting eggplant onto tomato rootstock to suppress Verticillium dahliae infection: the effect of root exudates. HortScience 44:2058–2062CrossRefGoogle Scholar
  71. Liu A, Chen S, Wang M, Liu D, Chang R, Wang Z, Lin X, Bai B, Ahammed GJ (2016) Arbuscular mycorrhizal fungus alleviates chilling stress by boosting redox poise and antioxidant potential of tomato seedlings. J Plant Growth Regul 35:109–120.  https://doi.org/10.1007/s00344-015-9511-z CrossRefGoogle Scholar
  72. López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot 62:176–184.  https://doi.org/10.1016/j.envexpbot.2007.08.002 CrossRefGoogle Scholar
  73. Luo Q, Sun L, Hu X, Zhou R (2014) The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis. PLoS ONE 9:e115581.  https://doi.org/10.1371/journal.pone.0115581 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Luo Q, Wang S, Sun L, Wang H (2017) Metabolic profiling of root exudates from two ecotypes of Sedum alfredii treated with Pb based on GC-MS. Sci Rep 7:39878.  https://doi.org/10.1038/srep39878 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Magalhaes JV, Liu J, Guimarães CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161.  https://doi.org/10.1038/ng2074 CrossRefPubMedGoogle Scholar
  76. Marin JA, Andreu P, Carrasco A, Arbeloa A (2010) Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Rev des Régions Arid 24:722–727Google Scholar
  77. Martin BC, Gleeson D, Statton J, Siebers AR, Grierson P, Ryan MH, Kendrick GA (2018) Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Front Microbiol.  https://doi.org/10.3389/fmicb.2017.02667(Article number 2667) CrossRefPubMedPubMedCentralGoogle Scholar
  78. Maruyama H, Sasaki T, Yamammoto Y, Wasaki J (2019) AtALMT3 is involved in malate efflux induced by phosphorus deficiency in arabidopsis thaliana root hairs. Plant Cell Physiol 60(1):107–115.  https://doi.org/10.1093/pcp/pcy190 CrossRefPubMedGoogle Scholar
  79. Maya MA, Matsubara Y (2013) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390.  https://doi.org/10.1007/s00572-013-0477-z CrossRefPubMedGoogle Scholar
  80. McAlister B, Finnie J, Watt MP, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi forests (SA). Plant Cell Tissue Organ Cult 81:347–358.  https://doi.org/10.1007/s11240-004-6658-x CrossRefGoogle Scholar
  81. Micallef SA, Channer S, Shiaris MP, Colón-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere. Plant Signal Behav 4:777–780.  https://doi.org/10.1093/jxb/erp053 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Montoliu A, López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2009) A novel in vitro tissue culture approach to study salt stress responses in citrus. Plant Growth Regul 59:179–187.  https://doi.org/10.1007/s10725-009-9401-0 CrossRefGoogle Scholar
  83. Mordocco AM, Brumbley JA, Lakshmanan P (2009) Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol Plant 45:450–457.  https://doi.org/10.1007/s11627-008-9173-7 CrossRefGoogle Scholar
  84. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448.  https://doi.org/10.1016/j.biotechadv.2013.12.005 CrossRefPubMedGoogle Scholar
  85. Nakayama M, Tateno R (2018) Solar radiation strongly influences the quantity of forest tree root exudates. Trees 32:871–879.  https://doi.org/10.1007/s00468-018-1685-0 CrossRefGoogle Scholar
  86. Neumann G, Bott S, Ohler MA, Mock HP, Lippmann R, Grosch R, Smalla K (2014) Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front Microbiol 5:1–6.  https://doi.org/10.3389/fmicb.2014.00002 CrossRefGoogle Scholar
  87. Oburger E, Gruber B, Schindlegger Y, Schenkeveld WDC, Hann S, Kraemer SM, Wenzel WW, Puschenreiter M (2014) Root exudation of phytosiderophores from soil-grown wheat. New Phytol 203:1161–1174.  https://doi.org/10.1111/nph.12868 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Oburguer E, Jones DL (2018) Sampling root exudates—mission impossible? Rhizosphere 6:116–133.  https://doi.org/10.1016/j.rhisph.2018.06.004 CrossRefGoogle Scholar
  89. Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103(3):1155–1166.  https://doi.org/10.1007/s00253-018-9556-6 CrossRefGoogle Scholar
  90. Orelle C, Durmort C, Mathieu K, Duchêne B, Aros S, Fenaille F, André F, Junot C, Vernet T, Jault JM (2018) A multidrug ABC transporter with a taste for GTP. Sci Rep.  https://doi.org/10.1038/s41598-018-20558-z(Article number 2309) CrossRefPubMedPubMedCentralGoogle Scholar
  91. Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult 81:287–300.  https://doi.org/10.1007/s11240-004-6648-z CrossRefGoogle Scholar
  92. Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth-promoting rhizobacteria. J Plant Growth Regul 35:877–902.  https://doi.org/10.1007/s00344-016-9583-4 CrossRefGoogle Scholar
  93. Paterson E, Sim A (2000) Effect of nitrogen supply and defoliation on loss of organic compounds from roots of Festuca rubra. J Exp Bot 51:1449–1457.  https://doi.org/10.1093/jexbot/51.349.1449 CrossRefPubMedGoogle Scholar
  94. Pavlov A, Bley T (2006) Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochem 41:848–852.  https://doi.org/10.1016/j.procbio.2005.10.026 CrossRefGoogle Scholar
  95. Pérez Alonso N, Chong-Pérez B, Capote A, Pérez A, Gerth A, Angenon G, Jiménez E (2016) Biotechnological approaches for biomass and cardenolide production in Digitalis purpurea L. Methods Mol Biol 1391(1):81–102.  https://doi.org/10.1007/978-1-4939-3332-7_6 CrossRefPubMedGoogle Scholar
  96. Pomilio AB, Leicach SR, Grass MY, Ghersa CM, Santoro M, Bitale AA (2000) Constituents of the root exudate of Avena fatua grown under far-infrared-enriched light. Phytochem Anal 11:304–308.  https://doi.org/10.1002/1099-1565(200009/10)11:5%3c304:AID-PCA531%3e3.0.CO;2-G CrossRefGoogle Scholar
  97. Pramanik MHR, Nagai M, Asao T, Matsui Y (2000) Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J Chem Ecol 26:1953–1967.  https://doi.org/10.1023/A:1005509110317 CrossRefGoogle Scholar
  98. Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM (2017) Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci 8:1056.  https://doi.org/10.3389/fpls.2017.01056 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Renouard S, Corbin C, Drouet S, Medvedec B, Doussot J, Colas C, Maunit B, Bhambra AS, Gontier E, Jullian N, Mesnard F, Boitel M, Abbasi BH, Arroo RRJ, Lainé E, Hano C (2018) Investigation of Linum flavum (L.) hairy root cultures for the production of anticancer aryltetralin lignans. Int J Mol Sci 19:990.  https://doi.org/10.3390/ijms19040990 CrossRefPubMedCentralGoogle Scholar
  100. Rosier A, Medeiros FHV, Bais HP (2018) Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant Soil 428(1–2):35–55.  https://doi.org/10.1007/s11104-018-3679-5 CrossRefGoogle Scholar
  101. Ruckli R, Hesse K, Glauser G, Rusterholz HP, Baur B (2014) Inhibitory potential of naphthoquinones leached from leaves and exuded from roots of the invasive plant Impatiens glandulifera. J Chem Ecol 40:371–378.  https://doi.org/10.1007/s10886-014-0421-5 CrossRefPubMedGoogle Scholar
  102. Rutto KL, Mizutani F, Kadoya K (2002) Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Sci Hortic 94:285–295.  https://doi.org/10.1016/S0304-4238(02)00008-0 CrossRefGoogle Scholar
  103. Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminate Decne grown in different culture systems. Plant Cell Tiss Organ Cult 106:445–454.  https://doi.org/10.1007/s11240-011-9942-6 CrossRefGoogle Scholar
  104. Schreiner M, Krumbein A, Knorr D, Smetanska I (2011) Enhanced glucosinolates in root exudates of Brassica rapa ssp. rapa mediated by salicylic acid and methyl jasmonate. J Agric Food Chem 59:1400–1405.  https://doi.org/10.1021/jf103585s CrossRefPubMedGoogle Scholar
  105. Schrey SD, Hartmann A, Hampp R (2015) Rhizosphere interactions. In: Krauss GJ, Nies DH (eds) Ecological biochemistry: environmental and interspecies interactions, vol 12. Wiley-VCH, Weinheim, pp 292–311.  https://doi.org/10.1002/9783527686063.ch15 CrossRefGoogle Scholar
  106. Sharma T, Dreyer I, Kochian L, Pineros MA (2016) The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci 7:1488.  https://doi.org/10.3389/fpls.2016.01488 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Singh RP, Jha PN (2016) Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiol Plant 38:2–12.  https://doi.org/10.1007/s11738-016-2123-9 CrossRefGoogle Scholar
  108. Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306.  https://doi.org/10.3390/12071290 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Strehmel N, Böttcher C, Schmidt S, Scheel D (2014) Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108:35–46.  https://doi.org/10.1016/j.phytochem.2014.10.003 CrossRefPubMedGoogle Scholar
  110. Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Clement C, Barka AB, Dhondt-Cordelier S, Vaillant-Gaveau N (2015) Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci 6:810.  https://doi.org/10.3389/fpls.2015.00810 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sun H, Tao J, Gu P, Xu G, Zhang Y (2016) The role of strigolactones in root development. Plant Signal Behav 11:e1110662.  https://doi.org/10.1080/15592324.2015.1110662 CrossRefPubMedGoogle Scholar
  112. Sung LS, Huang SY (2005) Lateral root bridging as a strategy to enhance L-DOPA production in Stizolobium hassjoo hairy root cultures by using a mesh hindrance mist trickling bioreactor. Biotechnol Bioeng 94:441–447.  https://doi.org/10.1002/bit.20804 CrossRefGoogle Scholar
  113. Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:1195–1202.  https://doi.org/10.1139/W07-082 CrossRefPubMedGoogle Scholar
  114. Takanashi K, Shitan N, Yazaki K (2014) The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol 31:417–430.  https://doi.org/10.5511/plantbiotechnology.14.0904a CrossRefGoogle Scholar
  115. Tawaraya K, Horie R, Saito S, Wagatsuma T, Saito K, Oikawa A (2014a) Metabolite profiling of root exudates of common bean under phosphorus deficiency. Metabolites 4:599–611.  https://doi.org/10.3390/metabo4030599 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Tawaraya K, Horie R, Shinano T, Wagatsuma T, Saito K, Oikawa A (2014b) Metabolite profiling of soybean root exudates under phosphorus deficiency. Soil Sci Plant Nutr 60:679–694.  https://doi.org/10.1080/00380768.2014.945390 CrossRefGoogle Scholar
  117. Tharayil N, Triebwasser DJ (2010) Elucidation of a diurnal pattern of catechin exudation by Centaurea stoebe. J Chem Ecol 36:200–204.  https://doi.org/10.1007/s10886-010-9749-7 CrossRefPubMedGoogle Scholar
  118. Tückmantel T, Leuschner C, Preusser S, Kandeler E, Angst G, Mueller CW, Meier IC (2017) Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment. Soil Biol Biochem 107:188–197.  https://doi.org/10.1016/j.soilbio.2017.01.006 CrossRefGoogle Scholar
  119. Uchendu EE, Paliyath G, Brown DCW, Saxena PK (2011) In vitro propagation of North American ginseng (Panax quinquefolius L.). In Vitro Cell Dev Biol Plant 47:710–718.  https://doi.org/10.1007/s11627-011-9379-y CrossRefGoogle Scholar
  120. Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu Ü, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EP, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159.  https://doi.org/10.1016/j.tplants.2008.02.001 CrossRefPubMedGoogle Scholar
  121. Vicente-Sánchez J, Nicolás E, Pedrero F, Alarcón JJ, Maestre-Valero JF, Férnandez F (2014) Arbuscular mycorrhizal symbiosis alleviates detrimental effects of saline reclaimed water in lettuce plants. Mycorrhiza 24:339–348.  https://doi.org/10.1007/s00572-013-0542-7 CrossRefPubMedGoogle Scholar
  122. Vílchez S, Molina L, Ramos C, Ramos JL (2000) Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates. J Bacteriol 182:91–99.  https://doi.org/10.1128/JB.182.1.91-99.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2017) Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant Cell Rep 36:1971–1984.  https://doi.org/10.1007/s00299-017-2214-0 CrossRefPubMedGoogle Scholar
  124. Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2018a) Salt stress alleviation in citrus plants by plant growth-promoting rhizobacteria Pseudomonas putida and Novosphingobium sp. Plant Cell Rep 37(11):1557–1569.  https://doi.org/10.1007/s00299-018-2328-z CrossRefPubMedGoogle Scholar
  125. Vives-Peris V, Molina L, Segura A, Gómez-Cadenas A, Pérez-Clemente RM (2018b) Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria. J Plant Phys 228:208–217.  https://doi.org/10.1016/j.jplph.2018.06.003 CrossRefGoogle Scholar
  126. Vranova V, Rejsek K, Skene KR, Janous D, Formanek P (2013) Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review. J Plant Nutr Soil Sci 176:175–199.  https://doi.org/10.1002/jpln.201000360 CrossRefGoogle Scholar
  127. Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454.  https://doi.org/10.1093/jxb/ers054 CrossRefPubMedGoogle Scholar
  128. Wilken D, González EJ, Hohe A, Jordan M, Kosky RG, Hirschmann GS, Gerth A (2005) Comparison of secondary plant metabolite production in cell suspension, callus culture and temporary immersion system. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture system for in vitro plant propagation. Springer, Dordrecht, pp 525–537.  https://doi.org/10.1007/1-4020-3200-5_39 CrossRefGoogle Scholar
  129. Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhövel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour 3:90–100.  https://doi.org/10.1079/PGR200575 CrossRefGoogle Scholar
  130. Xu W, Liu D, Wu F, Liu S (2015) Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. Eur J Plant Pathol 141:209–216.  https://doi.org/10.1007/s10658-014-0528-0 CrossRefGoogle Scholar
  131. Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069.  https://doi.org/10.1111/j.1365-313X.2011.04757.x CrossRefPubMedGoogle Scholar
  132. Zandalinas SI, Rivero RM, Martínez V, Gómez-Cadenas A, Arbona V (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16:105.  https://doi.org/10.1186/s12870-016-0791-7 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Zhang JH, Mao ZQ, Wang LQ, Shu HR (2007) Bioassay and identification of root exudates of three fruit tree species. J Integr Plant Biol 49:257–261.  https://doi.org/10.1111/j.1744-7909.2007.00307.x CrossRefGoogle Scholar
  134. Zhang HC, Liu JM, Chen HM, Gao CC, Lu HY, Zhou H, Li Y, Gao SL (2011) Up-regulation of licochalcone A biosynthesis and secretion by Tween 80 in hairy root cultures of Glycyrrhiza uralensis Fisch. Mol Biotechnol 47:50–56.  https://doi.org/10.1007/s12033-010-9311-4 CrossRefPubMedGoogle Scholar
  135. Zhou G, Delhaize E, Zhou M, Ryan PR (2013) The barley MATE gene, HvAACT1, increases citrate efflux and Al3+ tolerance when expressed in wheat and barley. Ann Bot 112:603–612.  https://doi.org/10.1093/aob/mct135 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Zhou G, Pereira JF, Delhaize E, Zhou M, Magalhaes JV, Ryan PR (2014) Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. J Exp Bot 65:2381–2390.  https://doi.org/10.1093/jxb/eru121 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Zhu X, Song F, Liu S, Liu F (2016) Role of arbuscular mycorrhiza in alleviating salinity stress in wheat (Triticum aestivum L.) grown under ambient and elevated CO2. J Agron Crop Sci 202:486–496.  https://doi.org/10.1111/jac.12175 CrossRefGoogle Scholar
  138. Ziv M (2005) Simple bioreactors for mass propagation of plants. Plant Cell Tissue Organ Cult 81:277–285.  https://doi.org/10.1007/s11240-004-6649-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departament de Ciències Agràries i del Medi NaturalUniversitat Jaume ICastellón de la PlanaSpain

Personalised recommendations