Plant Cell Reports

, Volume 38, Issue 9, pp 1165–1180 | Cite as

Overexpression of AtAGT1 promoted root growth and development during seedling establishment

  • Rui Wang
  • Lin Yang
  • Xiaofang Han
  • Yuhong Zhao
  • Ling Zhao
  • Beibei Xiang
  • Yerong Zhu
  • Yanling Bai
  • Yong WangEmail author
Original Article


Key message

Arabidopsis photorespiratory gene AtAGT1 is important for the growth and development of root, the non-photosynthetic organ, and it is involved in a complex metabolic network and salt resistance.


AtAGT1 in Arabidopsis encodes an aminotransferase that has a wide range of donor:acceptor combinations, including Asn:glyoxylate. Although it is one of the photorespiratory genes, its encoding protein has been suggested to function also in roots to metabolize Asn. However, experimental data are still lacking. In this study, we investigated experimentally the function of AtAGT1 in roots and our results uncovered its importance in root development during seedling establishment after seed germination. Overexpression of AtAGT1 in roots promoted both the growth of primary root and outgrowth of lateral roots. To further elucidate the molecular mechanisms underlying, amino acid content and gene expression in roots were analyzed, and results revealed that AtAGT1 is involved in a complex metabolic network and salt resistance of roots.


AtAGT1 Seedling establishment Asn Ser Salt tolerance ABA signaling 



We thank Prof. Hermann Bauwe and Dr. Stefan Timm, Rostock University, for giving us valuable suggestions in preparing this article and providing us transgenic Arabidopsis lines with leaf-specific expression of FpSGT. We also wish to thank Prof. Ningning Wang, Nankai University, for providing us the Arabidopsis PRP3 promoter. This work was supported by National Natural Science Foundation of China (Grant no. 31270296), PPP Project of CSC-DAAD (2013) and 111 Project B08011.

Author contribution statement

YW designed the experiments; RW, LY, LZ, YZ and XH performed experiments; BX, YZ and YB contributed to technical support, discussion of the experiments and manuscript; YW, RW and XH wrote this MS.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

299_2019_2435_MOESM1_ESM.docx (982 kb)
Supplementary material 1 (DOCX 982 kb)


  1. Bao X, Focke M, Pollard M, Ohlrogge J (2000) Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. Plant J 22:39–50CrossRefPubMedGoogle Scholar
  2. Barrero JM, Rodríguez PL, Quesada V, Piqueras P, Ponce MR, Micol JL (2006) Both abscisicacid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant Cell Environ 29:2000–2008CrossRefPubMedGoogle Scholar
  3. Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336CrossRefPubMedGoogle Scholar
  4. Brocker C, Vasiliou M, Carpenter S, Carpenter C, Zhang Y, Wang X, Kotchoni SO, Wood AJ, Kirch HH, Kopečný D, Nebert DW, Vasiliou V (2013) Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. Planta 237:189–210CrossRefPubMedGoogle Scholar
  5. Cassin-Ross G, Hu J (2014) Systematic phenotypic screen of Arabidopsis peroxisomal mutants identifies proteins involved in β-oxidation. Plant Physiol 166:1546–1559CrossRefPubMedPubMedCentralGoogle Scholar
  6. Charlton WL, Johnson B, Graham IA, Baker A (2005) Non-coordinate expression of peroxisome biogenesis, β-oxidation and glyoxylate cycle genes in mature Arabidopsis plants. Plant Cell Rep 23:647–653CrossRefPubMedGoogle Scholar
  7. Chen ZH, Walker RP, Técsi LI, Lea PJ, Leegood RC (2004) Phosphoenolpyruvate carboxykinase in cucumber plants is increased both by ammonium and by acidification, and is present in the phloem. Planta 219:48–58CrossRefPubMedGoogle Scholar
  8. Dinneny JR (2015) Traversing organizational scales in plant salt-stress responses. Curr Opin Plant Biol 23:70–75CrossRefPubMedGoogle Scholar
  9. Dunbabin V, Rengel Z, Diggle AJ (2004) Simulating form and function of root systems: efficiency of nitrate uptake is dependent on root system architecture and the spatial and temporal variability of nitrate supply. Funct Ecol 18:204–211CrossRefGoogle Scholar
  10. Eastmond PJ, Graham IA (2001) Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci 6:72–78CrossRefPubMedGoogle Scholar
  11. Eastmond PJ, Germain V, Lange PR, Bryce JH, Smith SM, Graham IA (2000) Post germinative growth and lipid catabolism in oil seeds lacking the glyoxylate cycle. Proc Natl Acad Sci USA 97:5669–5674CrossRefPubMedGoogle Scholar
  12. Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell 10:1043–1054CrossRefPubMedPubMedCentralGoogle Scholar
  13. Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signalling. J Exp Bot 58:2339–2358CrossRefPubMedGoogle Scholar
  14. Fowler T, Bernhardt C, Tierney ML (1999) Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol 121:1081–1092CrossRefPubMedPubMedCentralGoogle Scholar
  15. Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, Ohnishi J, Hata S, Gowik U, Westhoff P, Bräutigam A, Weber AP, Izui K (2011) A plastidial sodium-dependent pyruvate transporter. Nature 476:472–475CrossRefPubMedGoogle Scholar
  16. Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302CrossRefPubMedGoogle Scholar
  17. García-Calderón M, Pérez-Delgado CM, Credali A, Vega JM, Betti M, Márquez AJ (2017) Genes for asparagine metabolism in Lotus japonicus: differential expression and interconnection with photorespiration. BMC Genom 18:781–794CrossRefGoogle Scholar
  18. Gaufichon L, Rothstein SJ, Suzuki A (2016) Asparagine metabolic pathways in Arabidopsis. Plant Cell Physiol 57:675–689CrossRefPubMedGoogle Scholar
  19. Gaufichon L, Marmagne A, Belcram K, Yoneyama T, Sakakibara Y, Hase T, Grandjean O, Clément G, Citerne S, Boutet-Mercey S, Masclaux-Daubresse C, Chardon F, Soulay F, Xu X, Trassaert M, Shakiebaei M, Najihi A, Suzuki A (2017) ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds. Plant J 91:371–393CrossRefPubMedGoogle Scholar
  20. Geng Y, Wu R, Wee CW, Xie F, Wei X, Chan PM, Tham C, Duan L, Dinneny JR (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25:2132–2154CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808CrossRefPubMedGoogle Scholar
  22. Graham IA, Leaver CJ, Smith SM (1992) Induction of malate synthase gene expression in senescent and detached organs of cucumber. Plant Cell 4:349–357CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J, Göttler J, Kempa S, Krischke M, Dietrich K, Mueller MJ, Vicente-Carbajosa J, Hanson J, Dröge-Laser W (2015) Cross talk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots. Plant Cell 27:2244–2260CrossRefPubMedPubMedCentralGoogle Scholar
  24. Havir EA, Mchale NA (1988) A mutant of Nicotiana sylvestris lacking serine: glyoxylate aminotransferase: substrate specificity of the enzyme and fate of [2-C] glycolate in plants with genetically altered enzyme levels. Plant Physiol 87:806–808CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ivanov A, Kameka A, Pajak A, Bruneau L, Beyaert R, Hernández-Sebastià C, Marsolais F (2012) Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine. Amino Acids 42:2307–2318CrossRefPubMedGoogle Scholar
  26. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907CrossRefPubMedPubMedCentralGoogle Scholar
  27. Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends Plant Sci 20:586–594CrossRefPubMedGoogle Scholar
  28. Kelly AA, Quettier AL, Shaw E, Eastmond PJ (2011) Seed storage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis. Plant Physiol 157:866–875CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kendziorek M, Paszkowski A (2008) Properties of serine:glyoxylate aminotransferase purified from Arabidopsis thaliana leaves. Acta Biochim Biophys Sin 40:102–110CrossRefPubMedGoogle Scholar
  30. Kudielka RA, Theimer RR (1983) Derepression of glyoxylate cycle enzyme activities in anise suspension culture cells. Plant Sci Lett 31:237–244CrossRefGoogle Scholar
  31. Kunze M, Hartig A (2013) Permeability of the peroxisomal membrane: lessons from the glyoxylate cycle. Front Physiol 4:204CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lam HM, Coschigano KT, Oliveira IC, Melooliveira R, Coruzzi GM (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:569–593CrossRefPubMedGoogle Scholar
  33. Lancien M, Martin M, Hsieh MH, Leustek T, Goodman H, Coruzzi GM (2002) Arabidopsis glt1-T mutant defines a role for NADH-GOGAT in the non-photorespiratory ammonium assimilatory pathway. Plant J 29:347–358CrossRefPubMedGoogle Scholar
  34. Liepman AH, Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25:487–498CrossRefPubMedGoogle Scholar
  35. Lin M, Oliver DJ (2008) The role of acetyl-coenzyme a synthetase in Arabidopsis. Plant Physiol 147:1822–1829CrossRefPubMedPubMedCentralGoogle Scholar
  36. Malone S, Chen ZH, Bahrami AR, Walker RP, Gray JE, Leegood RC (2007) Phosphoenolpyruvate carboxykinase in Arabidopsis: changes in gene expression, protein and activity during vegetative and reproductive development. Plant Cell Physiol 48:441–450CrossRefPubMedGoogle Scholar
  37. Maurino VG, Peterhansel C (2010) Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol 13:249–256CrossRefPubMedGoogle Scholar
  38. Mchale NA, Havir EA, Zelitch I (1988) A mutant of Nicotiana sylvestris deficient in serine glyoxylate aminotransferase activity. Theor Appl Genet 76:71–75CrossRefPubMedGoogle Scholar
  39. Modde K, Timm S, Florian A, Michl K, Fernie AR, Bauwe H (2017) High serine: glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. J Exp Bot 68:643–656PubMedGoogle Scholar
  40. Muñoz-Bertomeu J, Bermúdez MA, Segura J, Ros R (2011) Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: interaction between ABA and primary metabolism. J Exp Bot 62:1229–1239CrossRefPubMedGoogle Scholar
  41. Murray AJS, Blackwell RD, Joy KW, Lea PJ (1987) Photorespiratory N donors, aminotransferase specificity and photosynthesis in a mutant of barley deficient in serine: glyoxylate amino transferase activity. Planta 172:106–113CrossRefPubMedGoogle Scholar
  42. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709CrossRefPubMedGoogle Scholar
  43. Nunes-Nesi A, Florian A, Howden A, Jahnke K, Timm S, Bauwe H, Sweetlove L, Fernie AR (2014) Is there a metabolic requirement for photorespiratory enzyme activities in heterotrophic tissues? Mol Plant 7:248–251CrossRefPubMedGoogle Scholar
  44. Peterman TK, Goodman HM (1991) The glutamine synthetase gene family of Arabidopsis thaliana: light-regulation and differential expression in leaves, roots and seeds. Mol Gen Genet 230:145–154CrossRefPubMedGoogle Scholar
  45. Potel F, Valadier MH, Ferrario-Méry S, Grandjean O, Morin H, Gaufichon L, Boutet-Mercey S, Lothier J, Rothstein SJ, Hirose N, Suzuki A (2009) Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana-roles of glutamate synthases and carbamoyl phosphate synthetase in leaves. FEBS J 276:4061–4076CrossRefPubMedGoogle Scholar
  46. Pracharoenwattana I, Cornah JE, Smith SM (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17:2037–2048CrossRefPubMedPubMedCentralGoogle Scholar
  47. Pracharoenwattana I, Cornah JE, Smith SM (2007) Arabidopsis peroxisomal malate dehydrogenase functions in β-oxidation but not in the glyoxylate cycle. Plant J 50:381–390CrossRefPubMedGoogle Scholar
  48. Quesada V, Ponce MR, Micol JL (2000) Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154:421–436PubMedPubMedCentralGoogle Scholar
  49. Ruiz-Sola MÁ, Arbona V, Gómez-Cadenas A, Rodríguez-Concepción M, Rodríguez-Villalón A (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in Arabidopsis. PLoS One 9:e90765CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rylott EL, Hooks MA, Graham IA (2001) Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana. Biochem Soc Trans 29:283–287CrossRefPubMedGoogle Scholar
  51. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506CrossRefPubMedGoogle Scholar
  52. Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2:1027–1038PubMedPubMedCentralGoogle Scholar
  53. Shkolnik-Inbar D, Adler G, Bar-Zvi D (2013) ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. Plant J 73:993–1005CrossRefPubMedGoogle Scholar
  54. Somerville CR, Ogren WL (1980) Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate amino transferase activity. Proc Natl Acad Sci USA 77:2684–2687CrossRefPubMedGoogle Scholar
  55. Ta TC, Joy KW (1986) Metabolism of some amino acids in relation to the photorespiratory nitrogen cycle of pea leaves. Planta 169:117–122CrossRefPubMedGoogle Scholar
  56. Taira M, Valtersson U, Burkhardt B, Ludwig RA (2004) Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell 16:2048–2058CrossRefPubMedPubMedCentralGoogle Scholar
  57. Turner JE, Greville K, Murphy EC, Hooks MA (2005) Characterization of Arabidopsis fluoroacetate-resistant mutants reveals the principal mechanism of acetate activation for entry into the glyoxylate cycle. J Biol Chem 280:2780–2787CrossRefPubMedGoogle Scholar
  58. Waditee R, Bhuiyan NH, Hirata E, Hibino T, Tanaka Y, Shikata M, Takabe T (2007) Metabolic engineering for betaine accumulation in microbes and plants. J Biol Chem 282:34185–34193CrossRefPubMedGoogle Scholar
  59. Walker RP, Chen ZH, Johnson KE, Famiani F, Tesci L, Leegood RC (2001) Using immunohistochemistry to study plant metabolism: the examples of its use in the localization of amino acids in plant tissues, and of phosphoenolpyruvate carboxykinase and its possible role in pH regulation. J Exp Bot 52:565–576CrossRefPubMedGoogle Scholar
  60. Wei Y, Lin M, Oliver DJ, Schnable PS (2009) The roles of aldehyde dehydrogenases (ALDHs) in the PDH bypass of Arabidopsis. BMC Biochem 10:7CrossRefPubMedPubMedCentralGoogle Scholar
  61. Yang L, Han H, Liu M, Zuo Z, Zhou K, Lü J, Zhu Y, Bai Y, Wang Y (2013) Overexpression of the Arabidopsis photorespiratory pathway gene, serine: glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). PCTOC 113:407–416CrossRefGoogle Scholar
  62. Yoshida T, Mogami J, Yamaguchi-Shinozaki K (2014) ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol 21:133–139CrossRefPubMedGoogle Scholar
  63. Zhang Q, Marsolais F (2014) Identification and characterization of omega-amidase as an enzyme metabolically linked to asparagine transamination in Arabidopsis. Phytochemistry 99:36–43CrossRefPubMedGoogle Scholar
  64. Zhang Q, Lee J, Pandurangan S, Clarke M, Pajak A, Marsolais F (2013) Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase. Phytochemistry 85:30–35CrossRefPubMedGoogle Scholar
  65. Zhao Y, Ai X, Wang M, Xiao L, Xia G (2016) A putative pyruvate transporter TaBASS2 positively regulates salinity tolerance in wheat via modulation of ABI4 expression. BMC Plant Biol 16:109CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273CrossRefPubMedPubMedCentralGoogle Scholar
  67. Zhu YR, Tao HL, Lv XY, Wang SF, Wang NN, Wang Y (2004) High level of endogenous l-serine initiates senescence in Spirodela polyrrhiza. Plant Sci 166:1159–1166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rui Wang
    • 1
  • Lin Yang
    • 2
  • Xiaofang Han
    • 1
  • Yuhong Zhao
    • 1
  • Ling Zhao
    • 1
  • Beibei Xiang
    • 3
  • Yerong Zhu
    • 1
  • Yanling Bai
    • 1
  • Yong Wang
    • 1
    Email author
  1. 1.College of Life SciencesNankai UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Animal and Plant ResistanceTianjin Normal UniversityTianjinChina
  3. 3.School of Chinese MateriaTianjin University of Traditional Chinese MedicineTianjinChina

Personalised recommendations