Plant Cell Reports

, Volume 38, Issue 9, pp 1151–1163 | Cite as

Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K+/Na+ homeostasis and water status

  • Abazar GhorbaniEmail author
  • Vali Ollah Ghasemi OmranEmail author
  • Seyed Mehdi Razavi
  • Hemmatollah Pirdashti
  • Mojtaba Ranjbar
Original Article


Key message

Piriformospora indica confers salt tolerance in tomato seedlings by increasing the uptake of nutrients such as N, P and Ca, improving K+/Na+ homoeostasis by regulating the expression of NHXs, SOS1 and CNGC15 genes, maintaining water status by regulating the expression of aquaporins.


Piriformospora indica, an endophytic basidiomycete, has been shown to increase the growth and improve the plants tolerance to stressful conditions, especially salinity, by establishing the arbuscular mycorrhiza-like symbiotic relationship in various plant hosts. In the present research, the effect of NaCl treatment (150 mM) and P. indica inoculation on growth, accumulation of nutrients, the transcription level of genes involved in ionic homeostasis (NHXs, SOS1 and CNGC15) and regulating water status (PIP1;2, PIP2;4, TIP1;1 and TIP2;2) in roots and leaves of tomato seedlings were investigated. The P. indica improved the uptake of N, P, Ca and K, and reduced Na accumulation, and had no significant effect on Cl accumulation in roots and leaves. The endophytic fungus also increased in K+/Na+ ratio in roots and leaves of tomato by regulating the expression of NHX isoforms and upregulating SOS1 and CNGC15 expression. Salinity stress increased the transcription of PIP2;4 gene and reduced the transcription of PIP1;2, TIP1;1 and TIP2;2 genes compared to the control treatment. However, P. indica inoculation upregulated the expression of PIP1;2 and PIP2;4 genes versus non-inoculated plants but did not have a significant effect on TIP1;1 and TIP2;2 expression. These results conclude that the positive effects of P. indica on nutrients accumulation, ionic homeostasis and water status lead to the increased salinity tolerance and the improved plant growth under NaCl treatment.


Piriformospora indica Salinity Lycopersicon esculentum Aquaporin Ionic homeostasis Mineral nutrition 



  1. Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci 263:107–115CrossRefPubMedGoogle Scholar
  2. Aghilia F, Jansab J, Khoshgoftarmanesh AH, Afyunic M, Schulind R, Frossarda E, Gampera HA (2014) Wheat plants invest more in mycorrhizae and receive more benefits from them under adverse than favorable soil conditions. Appl Soil Ecol 84:93–111CrossRefGoogle Scholar
  3. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816CrossRefPubMedGoogle Scholar
  4. Bárzana G, Aroca R, Bienert GP, Chaumont F, Ruiz-Lozano JM (2014) New insights into the regulation of aquaporins by the arbuscular mycorrhizal symbiosis in maize plants under drought stress and possible implications for plant performance. Mol Plant Microbe Interact 27:349–363CrossRefPubMedGoogle Scholar
  5. Chandrasekaran M, Boughattas S, Hu SJ, Oh SH, Sa TM (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24:611–625CrossRefPubMedGoogle Scholar
  6. Chen J, Zhang H, Zhang X, Tang M (2017) Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Front Plant Sci 8:1739CrossRefPubMedPubMedCentralGoogle Scholar
  7. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9CrossRefGoogle Scholar
  9. Estrada B, Aroca R, Maathuis FJM, Barea JM, Ruiz-Lozano JM (2013a) Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782CrossRefPubMedGoogle Scholar
  10. Estrada B, Barea JM, Aroca R, Ruiz-Lozano JM (2013b) A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant Soil 366:333–349CrossRefGoogle Scholar
  11. Fortmeier R, Schubert S (1995) Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant Cell Environ 18:1041–1047CrossRefGoogle Scholar
  12. Gálvez FJ, Baghour M, Hao G, Cagnac O, Rodríguez-Rosales MP, Venema K (2012) Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiol Biochem 51:109–115CrossRefPubMedGoogle Scholar
  13. Ghabooli M (2014) Effect of Piriformospora indica inoculation on some physiological traits of barley (Hordeum vulgare) under salt stress. Chem Nat Compd 50(6):1082–1087CrossRefGoogle Scholar
  14. Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H (2018a) Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato. Russ J Plant Physiol 65(6):898–907CrossRefGoogle Scholar
  15. Ghorbani A, Razavi SM, Ghasemi Omran VO, Pirdashti H (2018b) Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth, gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.). Plant Biol 20(4):729–736CrossRefPubMedGoogle Scholar
  16. Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guo J, Islam MA, Lin H, Ji C, Duan Y, Liu P, Zeng Q, Day B, Kang Z, Guo J (2018) Genome-wide identification of cyclic nucleotide-gated ion channel gene family in wheat and functional analyses of TaCNGC14 and TaCNGC16. Front plant sci 9:18CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014:701596. CrossRefGoogle Scholar
  19. He JD, Dong T, Wu HH, Zou YN, Wu QS, Kuca K (2019) Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Sci Hort 243:64–69CrossRefGoogle Scholar
  20. Jackson ML (1967) Soil chemical analysis, 1st edn. Prentice Hall of India Pvt. Ltd, New Delhi, pp 144–197Google Scholar
  21. Khalid M, Hassani D, Liao J, Xiong X, Bilal M, Huang D (2019) An endosymbiont Piriformospora indica reduces adverse effects of salinity by regulating cation transporter genes, phytohormones, and antioxidants in Brassica campestris ssp. Chinensis. Environ Exp Bot 153:89–99CrossRefGoogle Scholar
  22. Kitson R, Mellon M (1944) Colorimetric determination of phosphorus as molybdivanado phosphonic acid. Ind Eng Chem Res 16:379–383Google Scholar
  23. Kollist H, Nuhkat M, Roelfsema MR (2014) Closing gaps: linking elements that control stomatal movement. New Phytol 203:44–62CrossRefPubMedGoogle Scholar
  24. Kugler A, Köhler B, Palme K, Wolff P (2009) Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9:140CrossRefPubMedPubMedCentralGoogle Scholar
  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ma W, Berkowitz GA (2011) Ca2+ conduction by plant cyclic nucleotide gated channels and associated signaling components in pathogen defense signal transduction cascades. New Phytol 190:566–572CrossRefPubMedGoogle Scholar
  27. Maathuis FJM, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:467CrossRefPubMedPubMedCentralGoogle Scholar
  28. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624CrossRefPubMedGoogle Scholar
  29. Moeder W, Urquhart W, Ung H, Yoshioka K (2011) The role of cyclic nucleotide-gated ion channels in plant immunity. Mol Plant 4:442–452CrossRefPubMedGoogle Scholar
  30. Ouziad F, Wilde P, Schmelzer E, Hildebrandt U, Bothe H (2006) Analysis of expression of aquaporins and Na+/H+ transporters in tomato colonized by arbuscular mycorrhizal fungi and affected by salt stress. Environ Exp Bot 57:177–186CrossRefGoogle Scholar
  31. Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–684CrossRefPubMedGoogle Scholar
  32. Rodriguez-Rosales MP, Jiang X, Galvez FJ, Aranda MN, Cubero B, Venema K (2008) Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization. New Phytol 179:366–377CrossRefPubMedGoogle Scholar
  33. Ruiz-Lozano JM, Porcel R, Azcón R, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044CrossRefPubMedGoogle Scholar
  34. Saddique MAB, Ali Z, Khan AS, Rana IA, Shamsi IH (2018) Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice. Rice 11:34CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254CrossRefPubMedPubMedCentralGoogle Scholar
  36. Shahollari B, Varma A, Oelmuller R (2015) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162:945–958CrossRefGoogle Scholar
  37. Su ZZ, Wang T, Shrivastava N, Chen YY, Liu X, Sun Y, Yin Y, Gao QK, Lou BG (2017) Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Microbiol Res 199:29–39CrossRefPubMedGoogle Scholar
  38. Tariq A, Pan K, Olatunji OA, Graciano C, Li Z, Sun F, Sun X, Song D, Chen W, Zhang A (2017) Phosphorous application improves drought tolerance of Phoebe zhennan. Front Plant Sci 8:1561CrossRefPubMedPubMedCentralGoogle Scholar
  39. Vahabi K, Camehl I, Sherameti I, Oelmüller R (2013) Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid isoleucine levels in the roots. Plant Signal Behav 8(11):e26301CrossRefPubMedPubMedCentralGoogle Scholar
  40. Vahabi K, Dorcheh SK, Monajembashi S, Westermann M, Reichelt M, Falkenberg D, Hemmerich P, Sherameti I, Oelmüller R (2016) Stress promotes Arabidopsis–Piriformospora indica interaction. Plant Signal Behav 11(5):e1136763CrossRefPubMedPubMedCentralGoogle Scholar
  41. Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth promoting mycorrhizal fungus. Agric Res 1(2):117–131CrossRefGoogle Scholar
  42. Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007PubMedPubMedCentralGoogle Scholar
  43. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, Wettstein DV, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391CrossRefPubMedGoogle Scholar
  44. Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476CrossRefPubMedGoogle Scholar
  45. Yang S, Cui L (2009) The action of aquaporins in cell elongation, salt stress and photosynthesis. Chin J Biotechnol 25:321–327Google Scholar
  46. Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539CrossRefPubMedGoogle Scholar
  47. Yun P, Xu L, Wang SS, Shabala L, Shabala S, Zhang WY (2018) Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul 86(2):323–331CrossRefGoogle Scholar
  48. Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S (2016) Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. J Exp Bot 67:835–844CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of SciencesUniversity of Mohaghegh ArdabiliArdabilIslamic Republic of Iran
  2. 2.Department of Agronomy, Genetics and Agricultural Biotechnology Institute of TabarestanSari Agricultural Science and Natural Resources UniversitySariIran
  3. 3.Microbial Biotechnology Department, College of BiotechnologyAmol University of Special Modern TechnologiesAmolIran

Personalised recommendations