Plant Cell Reports

, Volume 38, Issue 8, pp 937–949 | Cite as

Co-orthologues of ribosome biogenesis factors in A. thaliana are differentially regulated by transcription factors

  • Jelena Kovacevic
  • Denise Palm
  • Domink Jooss
  • Daniela Bublak
  • Stefan Simm
  • Enrico SchleiffEmail author
Original Article


Key message

Different genes coding for one ribosome biogenesis factor are differentially expressed and are likely under the control of distinct transcription factors, which contributes to the regulatory space for ribosome maturation.


Maturation of ribosomes including rRNA processing and modification, rRNA folding and ribosome protein association requires the function of many ribosome biogenesis factors (RBFs). Recent studies document plant-specific variations of the generally conserved process of ribosome biogenesis. For instance, distinct rRNA maturation pathways and intermediates have been identified, the existence of plant specific RBFs has been proposed and several RBFs are encoded by multiple genes. The latter in combination with the discussed ribosome heterogeneity points to a possible function of the different proteins representing one RBF in diversification of ribosomal compositions. Such factor-based regulation would require a differential regulation of their expression, may be even controlled by different transcription factors. We analyzed the expression profiles of genes coding for putative RBFs and transcription factors. Most of the genes coding for RBFs are expressed in a comparable manner, while different genes coding for a single RBF are often differentially expressed. Based on a selected set of genes we document a function of the transcription factors AtMYC1, AtMYC2, AtbHLH105 and AtMYB26 on the regulation of different RBFs. Moreover, on the example of the RBFs LSG1 and BRX1, both encoded by two genes, we give a first hint on a differential transcription factor dependence of expression. Consistent with this observation, the phenotypic analysis of RBF mutants suggests a relation between LSG1-1 and BRX1-1 expression and the transcription factor MYC1. In summary, we propose that the multiple genes coding for one RBF are required to enlarge the regulatory space for ribosome biogenesis.


Ribosome biogenesis Ribosome biogenesis factors Transcriptional activation Expression profiling Promotor binding 



Ribosome biogenesis factor


Ribosomal protein


Transcription factor



We thank Deniz Streit and Thiruvenkadam Shanmugam for support and constructive discussions. This work was supported by Grants provided by the Deutsche Forschungsgemeinschaft (EXC 115: Macromolecular Complexes; DFG SFB902).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2019_2416_MOESM1_ESM.docx (902 kb)
Supplementary material 1 (DOCX 901 kb)


  1. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78CrossRefGoogle Scholar
  2. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate–ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479CrossRefGoogle Scholar
  3. Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B (2008) QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinform 9:465CrossRefGoogle Scholar
  4. Baek D, Kim MC, Chun HJ, Kang S, Park HC, Shin G, Park J, Shen M, Hong H, Kim WY, Kim DH, Lee SY, Bressan RA, Bohnert HJ, Yun DJ (2013) Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis. Plant Physiol 161:362–373CrossRefGoogle Scholar
  5. Bhatt AM, Zhang Q, Harris SA, White-Cooper H, Dickinson H (2004) Gene structure and molecular analysis of Arabidopsis thaliana ALWAYS EARLY homologs. Gene 336:219–229CrossRefGoogle Scholar
  6. Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18:1577–1591CrossRefGoogle Scholar
  7. Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, Zheng X, Wang JY, Lee MM, Benfey P, Woolf PJ, Schiefelbein J (2012) A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet 8:e1002446CrossRefGoogle Scholar
  8. Cecchetti V, Altamura MM, Brunetti P, Petrocelli V, Falasca G, Ljung K, Costantino P, Cardarelli M (2013) Auxin controls Arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. Plant J 74:411–422CrossRefGoogle Scholar
  9. Döring P, Treuter E, Kistner C, Lyck R, Chen A, Nover L (2000) The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12:265–278CrossRefGoogle Scholar
  10. Ebersberger I, Simm S, Leisegang MS, Schmitzberger P, Mirus O, von Haeseler A, Bohnsack MT, Schleiff E (2014) The evolution of the ribosome biogenesis pathway from a yeast perspective. Nucleic Acids Res 42:1509–1523CrossRefGoogle Scholar
  11. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19:1349CrossRefGoogle Scholar
  12. Fragkostefanakis S, Simm S, Paul P, Bublak D, Scharf KD, Schleiff E (2015) Chaperone network composition in solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis. Plant Cell Environ 38(4):693–709CrossRefGoogle Scholar
  13. Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Gene 313:17–42CrossRefGoogle Scholar
  14. Gangappa SN, Prasad VB, Chattopadhyay S (2010) Functional interconnection of MYC2 and SPA1 in the photomorphogenic seedling development of Arabidopsis. Plant Physiol 154:1210–1219CrossRefGoogle Scholar
  15. Guo Y, Gan S (2011) AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol 156:1612–1619CrossRefGoogle Scholar
  16. Hahn A, Bublak D, Schleiff E, Scharf KD (2011) Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23:741–755CrossRefGoogle Scholar
  17. Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11CrossRefGoogle Scholar
  18. Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix–loop–helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747CrossRefGoogle Scholar
  19. Henras AK, Soudet J, Gérus M, Lebaron S, Caizergues-Ferrer M, Mougin A, Henry Y (2008) The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci 65:2334–2359CrossRefGoogle Scholar
  20. Hochstatter J, Hölzel M, Rohrmoser M, Schermelleh L, Leonhardt H, Keough R, Gonda TJ, Imhof A, Eick D, Längst G, Németh A (2012) Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA. J Biol Chem 287:24365–24377CrossRefGoogle Scholar
  21. Howe EA, Sinha R, Schlauch D, Quackenbush J (2011) RNA-Seq analysis in MeV. Bioinformatics 27:3209–3210CrossRefGoogle Scholar
  22. Hsu YF, Chen YC, Hsiao YC, Wang BJ, Lin SY, Cheng WH, Jauh GY, Harada JJ, Wang CS (2014) AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose. Plant J 77:119–135CrossRefGoogle Scholar
  23. Lafontaine DL (2015) Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol 22:11–19CrossRefGoogle Scholar
  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  25. Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950CrossRefGoogle Scholar
  26. Lüscher B, Larsson LG (1999) The basic region/helix–loop–helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation. Oncogene 18:2955–2966CrossRefGoogle Scholar
  27. Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567CrossRefGoogle Scholar
  28. Missbach S, Weis BL, Martin R, Simm S, Bohnsack MT, Schleiff E (2013) 40S ribosome biogenesis co-factors are essential for gametophyte and embryo development. PLoS One 8:e54084CrossRefGoogle Scholar
  29. Monaghan J, Li X (2010) The HEAT repeat protein ILITYHIA is required for plant immunity. Plant Cell Physiol 51:742–753CrossRefGoogle Scholar
  30. Morohashi K, Grotewold E (2009) A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet 5:e1000396CrossRefGoogle Scholar
  31. Okanami M, Meshi T, Iwabuchi M (1998) Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucleic Acids Res 26:2638–2643CrossRefGoogle Scholar
  32. Palm D, Simm S, Darm K, Weis BL, Ruprecht M, Schleiff E, Scharf C (2016) Proteome distribution between nucleoplasm and nucleolus and its relation to ribosome biogenesis in Arabidopsis thaliana. RNA Biol 13:441–454CrossRefGoogle Scholar
  33. Peña C, Hurt E, Panse VG (2017) Eukaryotic ribosome assembly, transport and quality control. Nat Struct Mol Biol 24:689–699CrossRefGoogle Scholar
  34. Pesch M, Schultheiß I, Digiuni S, Uhrig JF, Hülskamp M (2013) Mutual control of intracellular localisation of the patterning proteins AtMYC1, GL1 and TRY/CPC in Arabidopsis. Development 140:3456–3467CrossRefGoogle Scholar
  35. Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, Salt DE, Bartel B (2006) An Arabidopsis basic helix–loop–helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 174:1841–1857CrossRefGoogle Scholar
  36. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110CrossRefGoogle Scholar
  37. Röth S, Mirus O, Bublak D, Sharf KD, Schleiff E (2017) DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1. Plant J 89:31–44CrossRefGoogle Scholar
  38. Saleh A, Alvarez-Venegas R, Avramova Z (2008) An efficient chromatin immunoprecipitation (ChIP) protocol for studying histone modifications in Arabidopsis plants. Nat Protoc 3:1018–1025CrossRefGoogle Scholar
  39. Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506CrossRefGoogle Scholar
  40. Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26CrossRefGoogle Scholar
  41. Sethi V, Raghuram B, Sinha AK, Chattopadhyay S (2014) A mitogen-activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell 26:3343–3357CrossRefGoogle Scholar
  42. Simm S, Fragkostefanakis S, Paul P, Keller M, Einloft J, Scharf KD, Schleiff E (2015) Identification and expression analysis of ribosome biogenesis factor co-orthologs in Solanum lycopersicum. Bioinform Biol Insights 9:1–17CrossRefGoogle Scholar
  43. Sommer MS, Daum B, Gross LE, Weis BL, Mirus O, Abram L, Maier UG, Kühlbrandt W, Schleiff E (2011) Chloroplast Omp85 proteins change orientation during evolution. Proc Natl Acad Sci USA 108:13841–13846CrossRefGoogle Scholar
  44. Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schmelzer E, Dekker K, Saedler H (2003) Disruption of Arabidopsis thaliana MYB26 results in male sterility due to non-dehiscent anthers. Plant J 34:519–528CrossRefGoogle Scholar
  45. Tafforeau L, Zorbas C, Langhendries JL, Mullineux ST, Stamatopoulou V, Mullier R, Wacheul L, Lafontaine DL (2013) The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors. Mol Cell 51:539–551CrossRefGoogle Scholar
  46. Töpfer R, Schell J, Steinbiss HH (1988) Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucleic Acids Res 16:8725CrossRefGoogle Scholar
  47. Uhrig JF, Canto T, Marshall D, MacFarlane SA (2004) Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein. Plant Physiol 135:2411–2423CrossRefGoogle Scholar
  48. van Riggelen J, Yetil A, Felsher DW (2010) MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 10:301–309CrossRefGoogle Scholar
  49. van Verk MC, Bol JF, Linthorst HJ (2011) WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol 11:89CrossRefGoogle Scholar
  50. Verma N, Burma PK (2017) Regulation of tapetum-specific A9 promoter by transcription factors AtMYB80, AtMYB1 and AtMYB4 in Arabidopsis thaliana and Nicotiana tabacum. Plant J 92:481–494CrossRefGoogle Scholar
  51. Wang H, Tang W, Zhu C, Perry SE (2002) A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos. Plant J 32:831–843CrossRefGoogle Scholar
  52. Wang L, Li H, Zhao C, Li S, Kong L, Wu W, Kong W, Liu Y, Wei Y, Zhu JK, Zhang H (2017) The inhibition of protein translation mediated by AtGCN1 is essential for cold tolerance in Arabidopsis thaliana. Plant Cell Environ 40:56–68CrossRefGoogle Scholar
  53. Weis BL, Missbach S, Marzi J, Bohnsack MT, Schleiff E (2014) The 60S associated ribosome biogenesis factor LSG1-2 is required for 40S maturation in Arabidopsis thaliana. Plant J. 80:1043–1056CrossRefGoogle Scholar
  54. Weis BL, Kovacevic J, Missbach S, Schleiff E (2015a) Plant-specific features of ribosome biogenesis. Trends Plant Sci 20:729–740CrossRefGoogle Scholar
  55. Weis BL, Palm D, Missbach S, Bohnsack MT, Schleiff E (2015b) atBRX1-1 and atBRX1-2 are involved in an alternative rRNA processing pathway in Arabidopsis thaliana. RNA 21:415–425CrossRefGoogle Scholar
  56. Yadav V, Mallappa C, Gangappa SN, Bhatia S, Chattopadhyay S (2005) A basic helix–loop–helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17:1953–1966CrossRefGoogle Scholar
  57. Yamaguchi N, Winter CM, Wu MF, Kwon CS, William DA, Wagner D (2014) PROTOCOLS: chromatin immunoprecipitation from Arabidopsis tissues. Arabidopsis Book 12:e0170CrossRefGoogle Scholar
  58. Yang C, Xu Z, Song J, Conner K, Vizcay Barrena G, Wilson ZA (2007) Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 19:534–548CrossRefGoogle Scholar
  59. Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res 39:D1118–D1122CrossRefGoogle Scholar
  60. Zhang J, Liu B, Li M, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang HB (2015) The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27:787–805CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Molecular BiosciencesGoethe UniversityFrankfurt am MainGermany
  2. 2.Frankfurt Institute of Advanced StudiesFrankfurt am MainGermany
  3. 3.Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt am MainGermany

Personalised recommendations