Plant Cell Reports

, Volume 38, Issue 5, pp 623–636 | Cite as

Citrus carotenoid isomerase gene characterization by complementation of the “Micro-Tom” tangerine mutant

  • Thaísa T. Pinheiro
  • Lázaro E. P. Peres
  • Eduardo Purgatto
  • Rodrigo R. Latado
  • Rodolfo A. Maniero
  • Mônica M. Martins
  • Antonio FigueiraEmail author
Original Article


Key message

Complementation of the “Micro-Tom” tomato tangerine mutant with a Citrus CRTISO allele restores the wild-type fruit carotenoid profile, indicating that the Citrus allele encodes an authentic functional carotenoid isomerase.


Citrus fruits are rich in carotenoids; the genus offers a large diversity in composition, yet to be fully explored to improve fruit nutritional quality. As perennial tree species, Citrus lack the resources for functional genetic studies, requiring the use of model plant systems. Here, we used the “Micro-Tom” (MT) tomato carrying the tangerine mutation (t), deficient for the carotenoid isomerase (CRTISO) gene, to functionally characterize the homologous C. sinensis genes. We identified four putative loci in the C. sinensis genome, named CsCRTISO, CsCRTISO-Like 1, CsCRTISO-Like 2, and CsCRTISO-Like 2B, with the latter as a presumed duplication of CRTISO-Like 2. In general, all the Citrus paralogs showed less expression specialization than the tomato ones, with CsCRTISO being the most expressed gene in all tissues analyzed. MT-t plants were successfully complemented with the CsCRTISO, and fruits showed a carotenoid profile similar to the control, indicating that the Citrus allele indeed encodes an authentic functional carotenoid isomerase and that the signal peptide is functional in tomato. MT was silenced using an inverted repeat of a fragment from the Citrus CRTISO resulting in a stronger phenotype than MT-t. MT-t and MT silenced for CRTISO presented an overall decrease in transcript accumulation of all genes from the biosynthesis pathway. The expression of the Citrus CRTISO gene is able to restore the biosynthesis of carotenoids with the appropriate regulation in MT-t. The decrease in transcript accumulation in MT-t and MT-CRTISO-suppressed lines reinforces previous suggestions that transcriptional regulation of the carotenoid biosynthesis involves regulatory loops by intermediate products.


Carotenoid biosynthesis CRTISO Functional genomics Sweet orange Tomato 



We thank Maiara Curtolo for assistance in identifying the location of CsCRTISO-L1 in the Citrus genome. TTP, LEPP, EP, RAM, MMM, and AF were recipients of fellowships from the Brazilian National Research Council (CNPq), whose support was greatly appreciated. The funder had no role in the study design, data collection, analysis and interpretation, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2019_2393_MOESM1_ESM.docx (2.8 mb)
Supplementary material 1 (DOCX 2828 KB)
299_2019_2393_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 KB)


  1. Abrouk M, Murat F, Pont C, Messing J, Jackson S, Faraut T, Tannier E, Plomion C, Cooke R, Feuillet C, Salse J (2010) Palaeogenomics of plants: synteny-based modelling of extinct ancestors. Trends Plant Sci 15:479–487CrossRefPubMedGoogle Scholar
  2. Ahuja MR, Fladung M (2014) Integration and inheritance of transgenes in crop plants and trees. Tree Genet Genomes 10:779–790CrossRefGoogle Scholar
  3. Alquézar B, Rodrigo MJ, Zacarías L (2008) Carotenoid biosynthesis and their regulation in Citrus fruits. Tree For Sci Biotechnol 2:23–35Google Scholar
  4. Carvalho RF, Campos M, Pino L, Crestana S, Zsogon A, Lima J, Benedito V, Peres L (2011) Convergence of developmental mutants into a single tomato model system: ‘Micro-Tom’ as an effective toolkit for plant development research. Plant Methods 7:18CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38:833–847CrossRefGoogle Scholar
  6. Chen C, Piero ARL, Gmitter F Jr (2015) Pigments in Citrus. In: Chen C (ed) Pigments in fruits and vegetables. Springer, New York, pp 165–187Google Scholar
  7. Curtolo M, Cristofani-Yaly M, Gazafi R, Takita MA, Figueira A, Machado MA (2017) QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genom 18:289CrossRefGoogle Scholar
  8. Davidovich-Rikanati R, Lewinsohn E, Bar E, Iijima Y, Pichersky E, Sitrit Y (2008) Overexpression of the lemon basil α-zingiberene synthase gene (ZIS) increases both mono- and sesquiterpene content in tomato fruit. Plant J 56:228–238CrossRefPubMedGoogle Scholar
  9. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469CrossRefPubMedPubMedCentralGoogle Scholar
  10. Emmanuel E, Levy AA (2002) Tomato mutants as tools for functional genomics. Curr Opin Plant Biol 5:112–117CrossRefPubMedGoogle Scholar
  11. Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G (2013) Dissection of tomato lycopene biosynthesis through Virus-Induced Gene Silencing. Plant Physiol 163:986–998CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fray R, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and cosuppression. Plant Mol Biol 22:589–602CrossRefPubMedGoogle Scholar
  15. Fulton TM, Chunzoongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209CrossRefGoogle Scholar
  16. Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960CrossRefPubMedPubMedCentralGoogle Scholar
  17. Getinet H, Seyoum T, Woldetsadik K (2008) Effect of cultivar, maturity stage and storage environment on quality of tomatoes. J Food Eng 87:467–478CrossRefGoogle Scholar
  18. Goodwin TW (1980) Biosynthesis of carotenoids. In: Goodwin TW (ed) The biochemistry of the carotenoids. vol 1 Plants. Chapman and Hall, London, pp 33–76CrossRefGoogle Scholar
  19. Guo F, Zhou W, Zhang J, Xu Q, Deng X (2012) Effect of the Citrus lycopene β-cyclase transgene on carotenoid metabolism in transgenic tomato fruits. PLoS One 7(2):e32221CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ikoma Y, Matsumoto H, Kato M (2016) Diversity in the carotenoid profiles and the expression of genes related to carotenoid accumulation among citrus genotypes. Breed Sci 66:139–147CrossRefPubMedPubMedCentralGoogle Scholar
  21. Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kachanovsky DE, Filler S, Isaacson T, Hirschberg J (2012) Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoids. Proc Natl Acad Sci USA 109:19201–19206CrossRefGoogle Scholar
  23. Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195CrossRefPubMedGoogle Scholar
  24. Kim IJ, Lee J, Han JA, Kim CS, Hur Y (2011) Citrus Lea promoter confers fruit-preferential and stress-inducible gene expression in Arabidopsis. Can J Plant Sci 91:459–466CrossRefGoogle Scholar
  25. Kiokias S, Proestos C, Varzakas T (2016) A review of the structure, biosynthesis, absorption of carotenoids-analysis and properties of their common natural extracts. Curr Res Nutr Food Sci 1:25–37CrossRefGoogle Scholar
  26. Liu L, Shao Z, Zhang M, Wang Q (2015) Regulation of carotenoid metabolism in tomato. Mol Plant 8:28–39CrossRefPubMedGoogle Scholar
  27. Lu H, Zhang C, Albrecht U, Shimizu R, Wang G, Bowman KD (2013) Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. Front Plant Sci 4:157CrossRefPubMedPubMedCentralGoogle Scholar
  28. Matsumoto H, Ikoma Y, Kato M, Kuniga T, Nakajima N, Yoshida T (2007) Quantification of carotenoids in citrus fruit by LC-MS and comparison of patterns of seasonal changes for carotenoids among citrus varieties. J Agric Food Chem 55:2356–2368CrossRefPubMedGoogle Scholar
  29. Meissner R, Jacobson Y, Melame S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472CrossRefGoogle Scholar
  30. Mezzomo N, Ferreira SRS (2016) Functionality, sources, and processing by supercritical technology: a Review. J Chem 2016:3164312CrossRefGoogle Scholar
  31. Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82CrossRefGoogle Scholar
  32. Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pecker I, Gabbay R, Cunningham FX, Hirschberg J (1996) Cloning and characterization of the cDNA for lycopene beta-cyclase from tomato reveals decrease in its expression during fruit ripening. Plant Mol Biol 30:807–819CrossRefPubMedGoogle Scholar
  34. Pinheiro TT, Litholdo CG Jr, Sereno ML, Leal GA Jr, Albuquerque PS, Figueira A (2011) Establishing references for gene expression analyses by RT-qPCR in Theobroma cacao tissues. Genet Mol Res 10:3291–3305CrossRefPubMedGoogle Scholar
  35. Pinheiro TT, Nishimura DS, Nadai FB, Figueira A, Latado RR (2015) Selection of reference genes for expression analyses of red-fleshed sweet orange (Citrus sinensis). Genet Mol Res 14:18440–18451CrossRefPubMedGoogle Scholar
  36. Pino LE, Lombardi-Crestana S, Azevedo MS, Scotton DC, Borgo L, Quecini V, Figueira A, Peres LEP (2010) The Rg1 allele as a valuable tool for genetic transformation of the tomato ‘Micro-Tom’ model system. Plant Methods 6:23CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rezaei MK, Deokar A, Tar’an B (2016) Identification and expression analysis of candidate genes involved in carotenoids biosynthesis in chickpea seeds. Front Plant Sci 7:1867CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351CrossRefPubMedGoogle Scholar
  39. Ruiz-Sola MA, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e0158CrossRefPubMedPubMedCentralGoogle Scholar
  40. Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K et al (2012) Tomato Genome Consortium The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  41. Sérino S, Gomez L, Costagliola G, Gautier H (2009) HPLC assay of tomato carotenoids: validation of a rapid microextraction technique. J Agric Food Chem 57:8753–8760CrossRefPubMedGoogle Scholar
  42. Sherwina JC, Reacher MH, Dean WH, Ngondi J (2012) Epidemiology of vitamin A deficiency and xerophthalmia in at-risk populations. Trans R Soc Trop Med Hyg 106:205–214CrossRefGoogle Scholar
  43. Sorkina A, Bardosh G, Liu YZ, Fridman I, Schlizerman L, Zur N, Or E, Goldschmidt EE, Blumwald E, Sadka A (2011) Isolation of a citrus promoter specific for reproductive organs and its functional analysis in isolated juice sacs and tomato. Plant Cell Rep 30:1627–1640CrossRefPubMedGoogle Scholar
  44. Tanaka T, Yasui Y, Ishigamori-Suzuki R, Oyama T (2008) Citrus compounds inhibits inflammation- and obesity-related colon carcinogenesis in mice. Nutr Cancer 1:70–80CrossRefGoogle Scholar
  45. Tao N, Hu Z, Liu Q, Xu J, Cheng Y, Guo L, Guo W, Deng X (2007) Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara-Cara navel Orange (Citrus sinensis Osbeck). Plant Cell Rep 26:837–843CrossRefPubMedGoogle Scholar
  46. Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692CrossRefPubMedGoogle Scholar
  47. Wang J, Chen D, Lei Y, Chang J-W, Hao B-H, Xing F, Li S, Xu Q, Deng XX, Chen LL (2014) Citrus sinensis Annotation Project (CAP): a comprehensive database for sweet orange genome. PLoS One 9(1):e87723CrossRefPubMedPubMedCentralGoogle Scholar
  48. Westphal A, Böhm V (2015) Properties, distribution, bioavailability, metabolism and health effects. Ernahrungs Umschau 62:196–207Google Scholar
  49. Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142:429–440CrossRefPubMedPubMedCentralGoogle Scholar
  50. Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao WB, Hao B-H, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang JW, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu XW, Cheng Y-J, Xu J, Liu J-H, Luo OJ, Tang Z, Guo W-W, Kuang H, Zhang H-Y, Roose ML, Nagarajan N, Deng X-X, Ruan Y (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66CrossRefPubMedGoogle Scholar
  51. Zouine M, Maza E, Djari A, Lauvernier M, Frasse P, Smouni A, Pirrello J, Bouzayen M (2017) TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. Plant J 92(4):727–735CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil
  2. 2.Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciências BiológicasUniversidade de São PauloPiracicabaBrazil
  3. 3.Departamento de Alimentos e Nutrição Experimental, Food Research Center (FoRC), Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil
  4. 4.Centro APTA Citros “Sylvio Moreira”Instituto AgronômicoCordeirópolisBrazil

Personalised recommendations