Overexpression of an ABA-dependent grapevine bZIP transcription factor, VvABF2, enhances osmotic stress in Arabidopsis

  • Jinyi Liu
  • Jinjin Chu
  • Chuangju Ma
  • Yueting Jiang
  • Yuanchun Ma
  • Jinsong Xiong
  • Zong-Ming ChengEmail author
Original Article


Key message

Overexpression of grapevine VvABF2 gene could enhance osmotic stress tolerance in Arabidopsis thaliana but fully required for ABA signaling.


The abscisic acid (ABA)-dependent AREB/ABF-SnRK2 pathway has been demonstrated to play a pivotal role in response to osmotic stress in model plants. However, its function in other specific species, for example grapevine, has not been fully characterized. In this study, grapevine (Vitis vinifera L.) ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a homologous gene of AREB/ABFs form Arabidopsis, was isolated and constitutively expressed in Arabidopsis under the control of the cauliflower mosaic virus 35S promoter. The VvABF2 transgenic Arabidopsis plants showed to be more sensitive to exogenous ABA compared to wild type plants and exhibited significant osmotic tolerance, like polyethylene glycol (PEG) and drought but fully required ABA for signaling. This fact was further confirmed by its downstream gene expression assays. In addition, the determination of ROS antioxidant enzymes (including SOD, POD and CAT) and the MDA of transgenic lines indicated that overexpression of VvABF2 in Arabidopsis significantly increased ROS scavenging ability and thereby reduced the cell membrane damage, which might be ABA-independent. Our results provide evidence that VvABF2 has a similar function to the Arabidopsis homolog in response to osmotic stresses, and that there is a similar ancestral function of this gene in ABA-dependent response to stresses in grapevine.


Grapevine Arabidopsis thaliana VvABF2 Osmotic stress ABA 



This study was supported by the National Natural Science Foundation of China (31501737, 31601739) and in part by Priority Academic Program Development of Modern Horticulture Science in Jiangsu Province, China (CX(14)2051) and the China Postdoctoral Science Foundation (2016M600425).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2019_2389_MOESM1_ESM.tif (899 kb)
Supplementary material 1 (TIF 898 KB)
299_2019_2389_MOESM2_ESM.tif (510 kb)
Supplementary material 2 (TIF 509 KB)
299_2019_2389_MOESM3_ESM.tif (9.1 mb)
Supplementary material 3 (TIF 9290 KB)
299_2019_2389_MOESM4_ESM.xlsx (10 kb)
Supplementary material 4 (XLSX 9 KB)


  1. Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867CrossRefGoogle Scholar
  2. Chow B, McCourt P (2004) Hormone signalling from a developmental context. J Exp Bot 55:247–251CrossRefGoogle Scholar
  3. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biol Med 11:81–128CrossRefGoogle Scholar
  4. Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24:3489–3505CrossRefGoogle Scholar
  5. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488CrossRefGoogle Scholar
  6. Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147:15–27CrossRefGoogle Scholar
  7. Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993CrossRefGoogle Scholar
  8. George IS, Haynes PA (2014) Current perspectives in proteomic analysis of abiotic stress in grapevines. Front Plant Sci 5:686CrossRefGoogle Scholar
  9. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930CrossRefGoogle Scholar
  10. Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230CrossRefGoogle Scholar
  11. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefGoogle Scholar
  12. Jakab G, Ton J, Flors V, Zimmerli L, Metraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274CrossRefGoogle Scholar
  13. Jin X, Xue Y, Wang R, Xu R, Bian L, Zhu B, Han H, Peng R, Yao Q (2013a) Transcription factor OsAP21 gene increases salt/drought tolerance in transgenic Arabidopsis thaliana. Mol Biol Rep 40:1743–1752CrossRefGoogle Scholar
  14. Jin MY, Piao XC, Xiu JR, Park SY, Lian ML (2013b) Micropropagation using a bioreactor system and subsequent acclimatization of grape rootstock ‘5BB’. Sci Hortic 164:35–40CrossRefGoogle Scholar
  15. Kim S, Kang JY, Cho DI, Park JH, Kim SY (2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J 40:75–87CrossRefGoogle Scholar
  16. Li XY, Liu X, Yao Y, Li YH, Liu S, He CY, Li JM, Lin YY, Li L (2013) Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. Int J Mol Sci 14:12827–12842CrossRefGoogle Scholar
  17. Liu J, Chen N, Chen F, Cai B, Dal Santo S, Tornielli GB, Pezzotti M, Cheng ZM (2014) Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera). BMC Genom 15:281CrossRefGoogle Scholar
  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(T)]) method. Methods 25, 402–408CrossRefGoogle Scholar
  19. Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149CrossRefGoogle Scholar
  20. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefGoogle Scholar
  21. Monk LS, Fagerstedt KV, Crawford RMM (1989) Oxygen-toxicity and superoxide-dismutase as an antioxidant in physiological stress. Physiol Plant 76:456–459CrossRefGoogle Scholar
  22. Mundy J, Yamaguchi-Shinozaki K, Chua NH (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87:1406–1410CrossRefGoogle Scholar
  23. Nicolas P, Lecourieux D, Kappel C, Cluzet S, Cramer G, Delrot S, Lecourieux F (2014) The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiol 164:365–383CrossRefGoogle Scholar
  24. Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnoff N (ed) Environment and plant metabolism. BIOS Scientific Publishers, Oxford, UK, pp 217–242Google Scholar
  25. Tu M, Wang X, Zhu Y, Wang D, Zhang X, Cui Y, Li Y, Gao M, Li Z, Wang Y, Wang X (2018) VvbZIP30 of grapevine functions in dehydration tolerance via the abscisic acid core signaling pathway. Hortic Res 5:49CrossRefGoogle Scholar
  26. Xu L, Yue Q, Xiang G, Bian F, Yao Y (2018) Melatonin promotes ripening of grape berry via increasing the levels of ABA, H2O2, and particularly ethylene. Hortic Res 5:41CrossRefGoogle Scholar
  27. Yan Y, Wang S, Wei M, Gong B, Shi Q (2018) Effect of different rootstocks on the salt stress tolerance in watermelon seedlings. Hortic Plant J 4:239–249CrossRefGoogle Scholar
  28. Yáñez M, Cáceres S, Orellana S, Bastías A, Verdugo I, Ruizlara S, Casaretto JA (2009) An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes. Plant Cell Rep 28:1497–1507CrossRefGoogle Scholar
  29. Yang H, Kim H-J, Chen H, Lu Y, Lu X, Wang C, Zhou B (2018) Reactive oxygen species and nitric oxide induce senescence of rudimentary leaves and the expression profiles of the related genes in Litchi chinensis. Hortic Res 5:23CrossRefGoogle Scholar
  30. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685CrossRefGoogle Scholar
  31. You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092CrossRefGoogle Scholar
  32. Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jinyi Liu
    • 1
  • Jinjin Chu
    • 1
  • Chuangju Ma
    • 1
  • Yueting Jiang
    • 1
  • Yuanchun Ma
    • 1
  • Jinsong Xiong
    • 1
  • Zong-Ming Cheng
    • 1
    • 2
    Email author
  1. 1.College of HorticultureNanjing Agricultural UniversityNanjingChina
  2. 2.Department of Plant SciencesUniversity of TennesseeKnoxvilleUSA

Personalised recommendations