Advertisement

Production of functional human interleukin 37 using plants

  • Nadiyah Alqazlan
  • Hong Diao
  • Anthony M. Jevnikar
  • Shengwu MaEmail author
Original Article

Abstract

Key message

We demonstrate for the first time that a fully bioactive human IL-37, a newly discovered cytokine acting as a fundamental inhibitor of innate immunity, can be recombinantly produced in plant cells.

Abstract

Interleukin 37 (IL-37), a newly discovered member of the interleukin (IL)-1 family of cytokines, plays a pivotal role in limiting innate inflammation and suppressing acquired immune responses, thus holding high potential for treating a wide array of human inflammatory and autoimmune disorders. In this study, we have developed transgenic plants as a novel expression platform for production of human IL-37 (IL-37). Plant transformation vectors synthesizing various forms of the b isoform of IL-37, including an unprocessed full-length precursor form (proIL-37b), a mature form (matIL-37b) and an IL-37 fusion protein in which IL-37b was fused to soybean agglutinin (SBA-IL-37b), have been constructed and introduced into tobacco plants. The expression of all forms of IL-37b was driven by a strong constitutive 35S promoter. Transgenic tobacco plants were generated with each of these constructs. Depending on the form of IL-37b being produced, the expression level of proIL-37b reached approximately 1% of TSP, while matIL-37b expression was substantially lower (0.01% TSP). Fusion to SBA substantially increased the expression of matIL-37b, with the expression level of fusion protein accounting for 1% of TSP. Functional analysis using a cell-based in vitro assay showed that plant-made matIL-37b and proIL-37b are both biologically active, but plant-made matIL-37b exhibited significantly greater biological activity than proIL-37b. These results demonstrate that plants have great potential of being a green bioreactor for low-cost, large-scale production of biologically active IL-37.

Keywords

Human IL-37 Cytokine Anti-inflammatory property Plant molecular farming Genetic transformation Recombinant protein Functional characterization 

Notes

Acknowledgements

AN was supported by a Graduate Student Scholarship from Saudi Arabia government. This work was supported in part by the London Health Sciences Centre, London, Ontario, Canada.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ballak DB, van Diepen JA, Moschen AR, Jansen HJ, Hijmans A, Groenhof GJ, Leenders F, Bufler P, Boekschoten MV, Müller M, Kersten S, Li S, Kim S, Eini H, Lewis EC, Joosten LA, Tilg H, Netea MG, Tack CJ, Dinarello CA, Stienstra R (2014) IL-37 protects against obesity-induced inflammation and insulin resistance. Nat Commun 5:4711–4722CrossRefGoogle Scholar
  2. Banerjee S, Apte-Deshpande A, Mandi N, Padmanabhan S (2009) A novel cytokine derived fusion tag for over-expression of heterologous proteins in E. coli. Int J Biol Life Sci 1:139–143Google Scholar
  3. Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499CrossRefGoogle Scholar
  4. Boraschi D, Lucchesi D, Hainzl S, Leitner M, Maier E, Mangelberger D, Oostingh GJ, Pfaller T, Pixner C, Posselt G, Italiani P, Nold MF, Nold-Petry CA, Bufler P, Dinarello CA (2011) IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur Cytokine Netw 22:127–147Google Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  6. Brandsma ME, Diao H, Wang X, Kohalmi SE, Jevnikar AM, Ma S (2010) Plant-derived recombinant human serum transferrin demonstrates multiple functions. Plant Biotechnol J 8:489–505CrossRefGoogle Scholar
  7. Bufler P, Gamboni-Robertson F, Azam T, Kim SH, Dinarello CA (2004) Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide. Biochem J 381:503–510CrossRefGoogle Scholar
  8. Bulau AM, Nold MF, Li S, Nold-Petry CA, Fink M, Mansell A, Schwerd T, Hong J, Rubartelli A, Dinarello CA, Bufler P (2014) Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37 inhibition of innate immune responses. Proc Natl Acad Sci USA 111:2650–2655CrossRefGoogle Scholar
  9. Carrington JC, Freed DD (1990) Cap-independent enhancement of translation by a plant potyvirus 5′nontranslated region. J Virol 64:1590–1597Google Scholar
  10. Cavalli G, Dinarello CA (2018) Suppression of inflammation and acquired immunity by IL-37. Immunol Rev 281:179–190CrossRefGoogle Scholar
  11. Deng HB, Zhang H, Liang JM, Xian HB, Chen ZC, Tang YC, Yang S, Feng WN (2018) IL-37 mediates the anti-tumor activity in non-small cell lung cancer through IL-6/STAT3 pathway. J Appl Biomed 16:15–21CrossRefGoogle Scholar
  12. Dinarello CA, Nold-Petry C, Nold M, Fujita M, Li S, Kim S, Bufler P (2016) Suppression of innate inflammation and immunity by interleukin-37. Eur J Immunol 46:1067–1081CrossRefGoogle Scholar
  13. Edgue G, Twyman RM, Beiss V, Fischer R, Sack M (2017) Antibodies from plants for bionanomaterials. WIREs Nanomed Nanobiotechnol 9:e1462CrossRefGoogle Scholar
  14. Fox JL (2012) First plant-made biologic approved. Nat Biotechnol 30:472CrossRefGoogle Scholar
  15. Jevnikar AM, Brennan DC, Singer GG, Heng JE, Maslinski W, Wuthrich RP, Glimcher LH, Kelley VE (1991) Stimulated kidney tubular epithelial cells express membrane associated and secreted TNF alpha. Kidney Int 40:203–211CrossRefGoogle Scholar
  16. Ji Q, Meng K, Yu K, Huang S, Huang Y, Min X, Zhong Y, Wu B, Liu Y, Nie S, Zhang J, Zhou Y, Zeng Q (2017) Exogenous interleukin 37 ameliorates atherosclerosis via inducing the Treg response in Apo E deficient mice. Sci Rep 7:3310CrossRefGoogle Scholar
  17. Kumar S, Hanning CR, Brigham-Burke MR, Rieman DJ, Lehr R, Khandekar S, Kirkpatrick RB, Scott GF, Lee JC, Lynch FJ, Gao W, Gambotto A, Lotze MT (2002) Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 18:61–71CrossRefGoogle Scholar
  18. Li S, Neff CP, Barber K, Hong J, Luo Y, Azam T, Palmer BE, Fujita M, Garlanda C, Mantovani A, Kim S, Dinarello CA (2015) Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8. Proc Natl Acad Sci USA 112:2497–2502CrossRefGoogle Scholar
  19. Li Y, Gao Q, Xu K, Peng X, Yuan X, Jiang W, Li M (2018) Interleukin-37 attenuates bleomycin-induced pulmonary inflammation and fibrosis in mice. Inflammation 41:1772–1779CrossRefGoogle Scholar
  20. Lunding L, Webering S, Vock C, Schröder A, Raedler D, Schaub B, Fehrenbach H, Wegmann M (2015) IL-37 requires IL-18Rα and SIGIRR/IL-1R8 to diminish allergic airway inflammation in mice. Allergy 70:366–373CrossRefGoogle Scholar
  21. Ma S, Huang Y, Davis A, Yin Z, Mi Q, Menassa R, Brandle JE, Jevnikar AM (2005) Production of biologically active human interleukin-4 in transgenic tobacco and potato. Plant Biotechnol J 3:309–318CrossRefGoogle Scholar
  22. Ma S, Liao YC, Jevnikar AM (2015) Induction of oral tolerance with transgenic plants expressing antigens for prevention/treatment of autoimmune, allergic and inflammatory diseases. Curr Pharm Biotechnol 16:1002–1011CrossRefGoogle Scholar
  23. Man DG, Abercrombie LL, Rudis MR, Millwood RJ, Dunlap JR, Stewart CN Jr (2012) Very bright orange fluorescent plants: endoplasmic reticulum targeting of orange fluorescent proteins as visual reporters in transgenic plants. BMC Biotechnol 12:17CrossRefGoogle Scholar
  24. Matsuoka M, Yamamoto N, Kano-Murakami Y, Tanaka Y, Ozeki Y, Hirano H, Kagawa H, Oshima M, Ohashi Y (1987) Classification and structural comparison of full-length cDNAs for pathogenesis-related proteins. Plant Physiol 85:942–946CrossRefGoogle Scholar
  25. McNamee EN, Masterson JC, Jedlicka P, McManus M, Grenz A, Collins CB, Nold MF, Nold-Petry C, Bufler P, Dinarello CA, Rivera-Nieves J (2011) Interleukin 37 expression protects mice from colitis. Proc Natl Acad Sci USA 108:16711–16716CrossRefGoogle Scholar
  26. Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA (2010) IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 11:1014–1022CrossRefGoogle Scholar
  27. Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, Lotz-Havla AS, Gersting SW, Cho SX, Lao JC, Ellisdon AM, Rotter B, Azam T, Mangan NE, Rossello FJ, Whisstock JC, Bufler P, Garlanda C, Mantovani A, Dinarello CA, Nold MF (2015) IL-37 requires the receptors IL-18Ralpha and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 4:354–365CrossRefGoogle Scholar
  28. Patel FJ, Volkmann DT, Taylor GW, Hansson MA, Anderson JF, Zhou Y, Scoazec LM, Hartford CV, Hainz DL (2014) IL-37 reduces inflammatory response after cerebral ischemia and reperfusion injury through down-regulation of pro-inflammatory cytokines. Cytokine 69:234–239CrossRefGoogle Scholar
  29. Paul M, Ma JK (2011) Plant-made pharmaceuticals: Leading products and production platforms. Biotechnol Appl Biochem 58:58–67CrossRefGoogle Scholar
  30. Riva F, Bonavita E, Barbati E, Muzio M, Mantovani A, Garlanda C (2012) TIR8/SIGIRR is an Interleukin-1 receptor/Toll like receptor family member with regulatory functions in inflammation and immunity. Front Immunol 3:322CrossRefGoogle Scholar
  31. Rogers JC, Milliman C (1983) Isolation and sequence analysis of a barley a-amylase cDNA clone. J Biol Chem 258:8169–8174Google Scholar
  32. Sakai N, Van Sweringen HL, Belizaire RM, Quillin RC, Schuster R, Blanchard J, Burns JM, Tevar AD, Edwards MJ, Lentsch AB (2012) Interleukin-37 reduces liver inflammatory injury via effects on hepatocytes and non-parenchymal cells. J Gastroenterol Hepatol 27:1609–1616CrossRefGoogle Scholar
  33. Schnell JA, Han S, Miki BL, Johnson DA (2010) Soybean peroxidase propeptides are functional signal peptides and increase the yield of a foreign protein. Plant Cell Rep 29:987–996CrossRefGoogle Scholar
  34. Teng X, Hu ZL, Wei XQ, Wang Z, Guan T, Liu N, Liu X, Ye N, Deng G, Luo C, Huang N, Sun C, Xu M, Zhou X, Deng H, Edwards CK III, Chen X, Wang X, Cui K, Wei Y, Li J (2014) IL-37 ameliorates the inflammatory process in psoriasis by suppressing proinflammatory cytokine production. J Immunol 192:1815–1823CrossRefGoogle Scholar
  35. Tete S, Tripodi D, Rosati M, Conti F, Maccauro G, Saggini A, Cianchetti E, Caraffa A, Antinolfi P, Toniato E, Castellani ML, Conti P, Theoharides TC (2012) IL-37 (IL-1F7) the newest anti-inflammatory cytokine which suppresses immune responses and inflammation. Int J Immunopathol Pharmacol 25:31–38CrossRefGoogle Scholar
  36. Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221CrossRefGoogle Scholar
  37. Tremblay R, Diao H, Huner N, Jevnikar AM, Ma S (2011a) The development, characterization, and demonstration of a novel strategy for purification of recombinant proteins expressed in plants. Transgenic Res 20:1357–1366CrossRefGoogle Scholar
  38. Tremblay R, Feng M, Menassa R, Huner NP, Jevnikar AM, Ma S (2011b) High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems. Transgenic Res 20:345–356CrossRefGoogle Scholar
  39. Wang DJ, Brandsma M, Yin Z, Wang A, Jevnikar AM, Ma S (2008) A novel platform for biologically active recombinant human interleukin-13 production. Plant Biotechnol J 6:504–515CrossRefGoogle Scholar
  40. Xiao HP, Li BD, Yang XM, Yin QL (2018) IL-37 protects myocardial ischemia reperfusion injury in mice through mediating inflammation response. Biomed Res 29:663–666Google Scholar
  41. Yang Y, Zhang ZX, Lian D, Haig A, Bhattacharjee RN, Jevnikar AM (2015) IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia-reperfusion injury. Kidney Int 87:396–408CrossRefGoogle Scholar
  42. Ye L, Jiang B, Deng J, Du J, Xiong W, Guan Y, Wen Z, Huang K, Huang Z (2015) IL-37 alleviates rheumatoid arthritis by suppressing IL-17 and IL-17-triggering cytokine production and limiting Th17 cell proliferation. J Immunol 194:5110–5119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nadiyah Alqazlan
    • 1
  • Hong Diao
    • 2
  • Anthony M. Jevnikar
    • 2
  • Shengwu Ma
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of BiologyUniversity of Western OntarioLondonCanada
  2. 2.Matthew Mailing Centre for Translational Transplant StudiesLondon Health Sciences CentreLondonCanada
  3. 3.Lawson Health Research InstituteLondonCanada

Personalised recommendations