Plant Cell Reports

, Volume 38, Issue 3, pp 255–277 | Cite as

Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes

  • Uday Chand JhaEmail author
  • Abhishek BohraEmail author
  • Rintu Jha
  • Swarup Kumar Parida
Review Article


Key message

Sustaining yield gains of grain legume crops under growing salt-stressed conditions demands a thorough understanding of plant salinity response and more efficient breeding techniques that effectively integrate modern omics knowledge.


Grain legume crops are important to global food security being an affordable source of dietary protein and essential mineral nutrients to human population, especially in the developing countries. The global productivity of grain legume crops is severely challenged by the salinity stress particularly in the face of changing climates coupled with injudicious use of irrigation water and improper agricultural land management. Plants adapt to sustain under salinity-challenged conditions through evoking complex molecular mechanisms. Elucidating the underlying complex mechanisms remains pivotal to our knowledge about plant salinity response. Improving salinity tolerance of plants demand enriching cultivated gene pool of grain legume crops through capitalizing on ‘adaptive traits’ that contribute to salinity stress tolerance. Here, we review the current progress in understanding the genetic makeup of salinity tolerance and highlight the role of germplasm resources and omics advances in improving salt tolerance of grain legumes. In parallel, scope of next generation phenotyping platforms that efficiently bridge the phenotyping–genotyping gap and latest research advances including epigenetics is also discussed in context to salt stress tolerance. Breeding salt-tolerant cultivars of grain legumes will require an integrated “omics-assisted” approach enabling accelerated improvement of salt-tolerance traits in crop breeding programs.


Gene Genomics Genetic variation QTL Salinity Stress Tolerance 



The authors acknowledge support from Indian Council of Agricultural Research (ICAR), India.


The authors have not received any funding for writing this MS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.


  1. Abel GH (1969) Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans. Crop Sci 9:697–698CrossRefGoogle Scholar
  2. Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive Mechanisms. Agron 7:18CrossRefGoogle Scholar
  3. Aghaei K, Ehsanpour AA, Shah AH, Komatsu S (2009) Proteome analysis of soybean hypocotyl and root under salt stress. Amino Acids 36:91–98CrossRefPubMedGoogle Scholar
  4. Ahmad P, Jhon R (2005) Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Arch Agron Soil Sci 51:665–672CrossRefGoogle Scholar
  5. Ahmad P, Abdel Latef AA, Rasool S, Akram NA, Ashraf M, Gucel S (2016) Role of proteomics in crop stress tolerance. Front Plant Sci 7:1336PubMedPubMedCentralGoogle Scholar
  6. Alam I, Sharmin SA, Kim KH, Kim YG, Lee JJ, Bahk JD, Lee BH (2011) Comparative proteomic approach to identify proteins involved in flooding combined with salinity stress in soybean. Plant Soil 346:45CrossRefGoogle Scholar
  7. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: The 2012 revision. ESA Working paper No. 12-03. Food and Ag. Org. United Nations, RomeGoogle Scholar
  8. Al-Mutawa MM (2003) Effect of salinity on germination and seedling growth of chickpea (Cicer arietinum L.) genotypes. Int J Agric Biol 5:226–229Google Scholar
  9. Al-Tamimi N, Brien C, Oakey H, Berger B, Saade S, Ho YS, Schmöckel SM, Tester M, Negrão S (2016) Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat Commun 7:1–11Google Scholar
  10. Amitai-Zeigersona H, Scolnikb PA, Bar-Zvi D (1995) Tomato Asrl mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid. Plant Sci 110:205–213CrossRefGoogle Scholar
  11. Arshad M, Gruber MY, Wall K, Hannoufa A (2017) An insight into microRNA156 role in salinity stress responses of alfalfa. Front Plant Sci 8:356CrossRefPubMedPubMedCentralGoogle Scholar
  12. Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189CrossRefGoogle Scholar
  13. Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376CrossRefGoogle Scholar
  14. Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20CrossRefGoogle Scholar
  15. Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16CrossRefGoogle Scholar
  16. Ashraf M, Waheed A (1993) Responses of some genetically diverse lines of chickpea (Cicer arietinum L.) to salt. Plant Soil 154:257–266CrossRefGoogle Scholar
  17. Ashraf M, Waheed A (1998) Components of genetic variation of salt tolerance in chickpea (Cicer arietinum L.). Arch Agron Soil Sci 42:415–424CrossRefGoogle Scholar
  18. Ashraf M, Wu L (2011) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42CrossRefGoogle Scholar
  19. Atieno J, Li Y, Langridge P, Dowling K, Brien C, Berger B, Varshney RK, Sutton T (2017) Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Sci Report 7:1300CrossRefGoogle Scholar
  20. Awlia M, Nigro A, Fajkus J, Schmoeckel SM, Negrão S, Santelia D, Trtílek M, Tester M, Julkowska MM, Panzarová K (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front Plant Sci 7:1414CrossRefPubMedPubMedCentralGoogle Scholar
  21. Banzai T, Hershkovits G, Katcoff DJ, Hanagata N, Dubinsky Z, Karube I (2002) Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza. Plant Sci 162:499–505CrossRefGoogle Scholar
  22. Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bayuelo-Jiménes JS, Craig R, Lynch JP (2002a) Salinity tolerance of Phaseolus species during germination and early seedling growth. Crop Sci 42:1584–1594CrossRefGoogle Scholar
  24. Bayuelo-Jiménes JS, Debouck DG, Lynch JP (2002b) Salinity tolerance of Phaseolus species during early vegetative growth. Crop Sci 42:2184–2192CrossRefGoogle Scholar
  25. Bayuelo-Jiménes JS, Debouck DG, Lynch JP (2003) Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions. Field Crops Res 80:207–222CrossRefGoogle Scholar
  26. Becker JS (2010) Imaging of metals, metalloids, and non-metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in biological tissues. In: Rubakhin SS, Sweedler JV (eds) Mass spectrometry imaging: principles and protocols. Humana Press, Totowa, pp 51–82CrossRefGoogle Scholar
  27. Berger B, de Regt B, Tester M (2012) Trait dissection of salinity tolerance with plant phenomics. Methods Mol Biol 913:399–413CrossRefPubMedGoogle Scholar
  28. Bhalla R, Narasimhan K, Swarup S (2005) Metabolomics and its role in understanding cellular responses in plants. Plant Cell Rep 24:562–571CrossRefPubMedGoogle Scholar
  29. Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 585467:17Google Scholar
  30. Bohra A, Singh NP (2015) Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol Lett 37:1529–1539CrossRefPubMedGoogle Scholar
  31. Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK (2014) Genomics assisted breeding in four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291CrossRefPubMedPubMedCentralGoogle Scholar
  32. Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56:151–161CrossRefGoogle Scholar
  33. Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.): model food legumes. Plant Soil 252:55–128CrossRefGoogle Scholar
  34. Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085CrossRefPubMedGoogle Scholar
  35. Büyük İ, Inal B, Ilhan E, Tanriseven M, Aras S, Erayman M (2016) Genome-wide identification of salinity responsive HSP70s in common bean. Mol Biol Rep 43:1251–1266CrossRefPubMedGoogle Scholar
  36. Cabot C, Sibole JV, Barceló J, Poschenrieder C (2014) Lessons from crop plants struggling with salinity. Plant Sci 226:2–13CrossRefPubMedGoogle Scholar
  37. Campbell MT, Knecht AC, Berger B, Brien CJ, Wang D, Walia H (2015) Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiol 168:1476–1697CrossRefPubMedPubMedCentralGoogle Scholar
  38. Chankaew S, Isemura T, Naito K, Ogiso-Tanaka E, Tomooka N, Somta P, Kaga A, Vaughan DA, Srinives P (2014) QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theor Appl Genet 127:691–702CrossRefPubMedGoogle Scholar
  39. Chen TH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ 34:1–20CrossRefGoogle Scholar
  40. Chen XQ, Yu BJ (2007) Ionic effects of Na+ and Cl on photosynthesis in Glycine max seedlings under isoosmotic salt stress. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 33:294–300PubMedGoogle Scholar
  41. Chen X, Laudeman TW, Rushton PJ, Spraggins TA, Timko MP (2007) CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L.) methylation filtered genomic genespace sequences. BMC Bioinform 8:129CrossRefGoogle Scholar
  42. Chen H, Cui S, Fu S, Gai J, Yu D (2008) Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Austr J Agric Res 59:1086–1091CrossRefGoogle Scholar
  43. Chen JB, Wang SM, Jing RL, Mao XG (2009) Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol 166:12–19CrossRefPubMedGoogle Scholar
  44. Chen P, Yan K, Shao H, Zhao S (2013) Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS One 8:e83227CrossRefPubMedPubMedCentralGoogle Scholar
  45. Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y (2014) Genome-wide analysis of soybean HD-Zip gene family and expression profiling under Salinity and drought treatments. PLoS One 9:e87156CrossRefPubMedPubMedCentralGoogle Scholar
  46. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572CrossRefPubMedGoogle Scholar
  47. Colmsee C, Mascher M, Czauderna T, Hartmann A, Schlüter U, Zellerhoff N, Schmitz J, Bräutigam A, Pick TR, Alter P, Gahrtz M, Witt S, Fernie AR, Börnke F, Fahnenstich H, Bucher M, Dresselhaus T, Weber AP, Schreiber F, Scholz U, Sonnewald U (2012) OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biol 12:245CrossRefPubMedPubMedCentralGoogle Scholar
  48. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13CrossRefPubMedPubMedCentralGoogle Scholar
  49. Considine MJ, Siddique KHM, Foyer CH (2017) Nature’s pulse power: legumes, food security and climate change. J Expt Bot 68:1815–1818CrossRefGoogle Scholar
  50. Costa JH, Jolivet Y, Hasenfratz-Sauder MP, Orellano EG, da Guia Silva Lima M, Dizengremel P, Fernandes de Melo D (2007) Alternative oxidase regulation in roots of Vigna unguiculata cultivars differing in drought/salt tolerance. J Plant Physiol 164:718–727CrossRefPubMedGoogle Scholar
  51. Dash S, Campbell JD, Cannon EK, Cleary AM, Huang W, Kalberer SR, Karingula V, Rice AG, Singh J, Umale PE, Weeks NT, Wilkey AP, Farmer AD, Cannon SB (2016) Legume information system (LegumeInfo. org): a key component of a set of federated data resources for the legume family. Nucl Acids Res 44:D1181–D1188CrossRefPubMedGoogle Scholar
  52. de Lorenzo F, Merchan S, Blanchet M, Megiàs F, Frugier M, Crespi CS (2007) Differential expression of the TFIIIA regulatory pathway in response to salt stress between Medicago truncatula genotypes. Plant Physiol 145:1521–1532CrossRefPubMedPubMedCentralGoogle Scholar
  53. de Abreu CE, Araújo Gdos S, Monteiro-Moreira AC, Costa JH, Leite Hde B, Moreno FB, Prisco JT, Gomes-Filho E (2014) Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance. Plant Cell Rep 33:1289–1306CrossRefPubMedGoogle Scholar
  54. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trend Plant Sci 19:371–379CrossRefGoogle Scholar
  55. DeRose-Wilson L, Gaut BS (2011) Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS One 6:e22832CrossRefPubMedPubMedCentralGoogle Scholar
  56. Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244CrossRefPubMedPubMedCentralGoogle Scholar
  57. Dias DA, Hill CB, Jayasinghe NS, Atieno J, Sutton T, Roessner U (2015) Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. J Chromatogr B Anal Technol Biomed Life Sci 1000:1–13CrossRefGoogle Scholar
  58. Do TD, Chen H, Hien VT, Hamwieh A, Yamada T, Sato T, Yan Y, Cong H, Shono M, Suenaga K, Xu D (2016) Ncl synchronously regulates Na+, K+, and Cl in soybean and greatly increases the grain yield in saline field conditions. Sci Rep 6:19147CrossRefPubMedPubMedCentralGoogle Scholar
  59. Dua RP (1992) Differential response of chickpea (Cicer arietinum) genotypes to salinity. J Agric Sci 119:367–371CrossRefGoogle Scholar
  60. Dua RP (1998) Salinity tolerance in chickpea (Cicer arientinum L.). Indian J Plant Physiol 3:102–106Google Scholar
  61. Dua RP, Sharma PC (1995) Salinity tolerance of Kabuli and Desi chickpea genotypes. Intl Chickpea Pigeonpea Newslett 2::19–22Google Scholar
  62. Durand M, Lacan D (1994) Sodium partitioning within the shoot of soybean. Physiol Plant 91:65–71CrossRefGoogle Scholar
  63. Essa TA (2002) Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J Crop Agron Crop Sci 188:86–93CrossRefGoogle Scholar
  64. Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99CrossRefPubMedGoogle Scholar
  65. FAO (2015) FAO land and plant nutrition management service. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  66. Farag MA, Huhman DV, Dixon RA, Sumner LW (2008) Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol 146:387–402CrossRefPubMedPubMedCentralGoogle Scholar
  67. Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KHM (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217CrossRefPubMedGoogle Scholar
  68. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319CrossRefGoogle Scholar
  69. Flowers TJ, Gaur PM, Gowda CL, Krishnamurthy L, Samineni S, Siddique KH, Turner NC, Vadez V, Varshney RK, Colmer TD (2010) Salt sensitivity in chickpea. Plant Cell Environ 33:490–509CrossRefPubMedGoogle Scholar
  70. Forestan C, Cigliano RA, Farinati S, Lunardon A, Sanseverino W, Varotto S (2016) Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Sci Rep 6:30446CrossRefPubMedPubMedCentralGoogle Scholar
  71. Foyer CH, Lam HM, Nguyen HT, Siddique KH, Varshney RK, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM, Cooper JW, Miller AJ, Kunert K, Vorster J, Cullis C, Ozga JA, Wahlqvist ML, Liang Y, Shou H, Shi K, Yu J, Fodor N, Kaiser BN, Wong FL, Valliyodan B, Considine MJ (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2:16112CrossRefGoogle Scholar
  72. Freitas JBS, Chagas RM, Almeida IMR, Cavalcanti FR, Silveira JAG (2001) Expression of physiological traits related to salt tolerance in two contrasting cowpea cultivars. Documentos Embrapa Meio- Norte 56:115–118Google Scholar
  73. Friesen ML, von Wettberg EJ, Badri M, Moriuchi KS, Barhoumi F, Chang PL, Cuellar-Ortiz S, Cordeiro MA, Vu WT, Arraouadi S, Djébali N, Zribi K, Badri Y, Porter SS, Aouani ME, Cook DR, Strauss SY, Nuzhdin SV(2014)The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula. BMC Genom 15:1160Google Scholar
  74. Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644CrossRefGoogle Scholar
  75. Gallusci P, Dai Z, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Vile D, Brunel-Muguet S (2017) Epigenetics for plant improvement: Current knowledge and modeling Avenues. Trends Plant Sci 1360–1385:30089–30090Google Scholar
  76. Gama PBS, Inanaga S, Tanaka K, Nakazawa R (2007) Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr J Biotechnol 6:079–088Google Scholar
  77. Garg R, Narayana V, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922CrossRefPubMedPubMedCentralGoogle Scholar
  78. Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228CrossRefPubMedPubMedCentralGoogle Scholar
  79. Gibbs JA, Pound M, French AP, Wells DM, Murchie E, Pridmore T (2018) Plant phenotyping: an active vision cell for three-dimensional plant shoot reconstruction. Plant Physiol 178:524–534CrossRefPubMedPubMedCentralGoogle Scholar
  80. Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124:323–330CrossRefGoogle Scholar
  81. Goerzt SH, Coons JM (1991) Tolerance of tepary and navy beans to NaCl during germination and emergence. Hort Sci 24:249–293Google Scholar
  82. Gogile A, Andargie M, Muthuswamy M (2013) Screening selected genotypes of cowpea [Vigna unguiculata (L.) Walp.] for salt tolerance during seedling growth stage. Pak J Biol Sci 16:671–679CrossRefPubMedGoogle Scholar
  83. Greenland DJ (1984) Exploited plants: rice. Biologist 31:291–325Google Scholar
  84. Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L (2014a) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950CrossRefPubMedGoogle Scholar
  85. Guan R, Chen J, Jiang J, Liu G, Liu Y, Tian L, Yu L, Chang R, Qiu L (2014b) Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng8. Crop J 2:358–365CrossRefGoogle Scholar
  86. Guo R, Shi LX, Yang CW, Yan CR, Zhong XL, Liu Q, Xia X, Li HR (2016) Comparison of ionomic and metabolites response under alkali stress in old and young leaves of cotton (Gossypium hirsutum L.) seedlings. Front Plant Sci 7:1785PubMedPubMedCentralGoogle Scholar
  87. Guo R, Shi L, Yan C, Zhong X, Gu F, Liu Q, Xia X, Li H (2017) Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biol 17:41CrossRefPubMedPubMedCentralGoogle Scholar
  88. Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Intl J Genom 2014:1–18CrossRefGoogle Scholar
  89. Ha BK, Vuong TD, Velusamy V, Nguyen HT, Shannon JG, Lee JD (2013) Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 193:79–88CrossRefGoogle Scholar
  90. Hairmansis A, Berger B, Tester M, Roy SJ (2014) Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 6:16CrossRefGoogle Scholar
  91. Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14:1437–1440CrossRefPubMedPubMedCentralGoogle Scholar
  92. Hamwieh A, Xu DH (2008) Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans. Breed Sci 58:355–359CrossRefGoogle Scholar
  93. Hamwieh A, Tuyen DD, Cong H, Benitez ER, Takahashi R, Xu DH (2011) Identification and validation of a major QTL for salt tolerance in soybean. Euphytica 179:451–459CrossRefGoogle Scholar
  94. Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257CrossRefPubMedGoogle Scholar
  95. Hernández JA, Corpas FJ, Gómez M, del Río LA, Sevilla F (1993) Salt induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89:103–110CrossRefGoogle Scholar
  96. Hernández JA, Jiménez A, Mullineaux P, Sevilia F (2000) Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853–862CrossRefGoogle Scholar
  97. Hill CB, Roessner U (2013) Metabolic Profiling of Plants by GC-MS. In: Weckwerth W, Kahl G (eds) The handbook of plant metabolomics: metabolite profiling and networking, first edn. Wiley, Weinheim, pp 3–23Google Scholar
  98. Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS One 9:e92598CrossRefPubMedPubMedCentralGoogle Scholar
  99. Hossain Z, Khatoon A, Komatsu S (2013) Soybean proteomics for unraveling abiotic stress response mechanism. J Proteome Res 12:4670–4684CrossRefPubMedGoogle Scholar
  100. Hoyos-Villegas V, Song Q, Kelly JD (2017) Genome-wide association analysis for drought tolerance and associated traits in common Bean. Plant Genome CrossRefPubMedGoogle Scholar
  101. Huang L, Zeng A, Chen P, Wu C, Wang D, Wen Z (2018) Genomewide association analysis of salt tolerance in soybean [Glycine max (L.) Merr.]. Plant Breed. CrossRefGoogle Scholar
  102. Ismail AM, Horie T (2017) Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu Rev Plant Biol 68:19.1–19.30CrossRefGoogle Scholar
  103. Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729CrossRefGoogle Scholar
  104. James RA, Sirault XR (2012) Infrared thermography in plant phenotyping for salinity tolerance. Methods Mol Biol 913:173–189PubMedGoogle Scholar
  105. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458CrossRefGoogle Scholar
  106. Jha UC, Barh D, Parida S, Jha R, Singh NP (2016) Applied molecular biotechnology. In Khan MS, Khan IA, Barh D (Eds), Whole-genome resequencing Current status and future prospects in crop improvement. CRC Press, Boca Raton, pp 187–212Google Scholar
  107. Jha UC, Bohra A, Jha R, Parida S (2017) Integrated ‘omics’ approaches to sustain major global grain legume productivity under heat stress. Plant Breed 136:437–459CrossRefGoogle Scholar
  108. Ji W, Cong R, Li S, Li R, Qin Z, Li Y, Zhou X, Chen S, Li J (2016) Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci 7:573PubMedPubMedCentralGoogle Scholar
  109. Jia Q, Xiao ZX, Wong FL, Sun S, Liang KJ, Lam HM (2017) Genome-wide analyses of the soybean F-Box gene family in response to salt stress. Int J Mol Sci 18:818CrossRefPubMedCentralGoogle Scholar
  110. Jiao Y, Bai Z, Xu J, Zhao M, Khan Y, Hu Y, Shi L (2018) Metabolomics and its physiological regulation process reveal the salttolerant mechanism in Glycine soja seedling roots. Plant Physiol Biochem 126:187–196CrossRefPubMedGoogle Scholar
  111. Kaashyap M, Ford R, Bohra A, Kuvalekar A, Mantri N (2017) Improving salt tolerance of chickpea using modern genomics tools and molecular breeding. Curr Genom 18:557–567CrossRefGoogle Scholar
  112. Kaashyap M, Ford R, Kudapa H, Jain M, Edwards D, Varshney R, Mantri N (2018) Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea. Sci Rep 8:4855CrossRefPubMedPubMedCentralGoogle Scholar
  113. Kan GZ, Zhang W, Yang WM, Ma DY, Zhang D, Hao DR, Hu ZB, Yu DY (2015) Association mapping of soybean seed germination under salt stress. Mol Genet Genom 290:2147–2162CrossRefGoogle Scholar
  114. Kan G, Ning L, Li Y, Hu Z, Zhang W, He X, Yu D (2016) Identification of novel loci for salt stress at the seed germination stage in soybean. Breed Sci 66:530–541CrossRefPubMedPubMedCentralGoogle Scholar
  115. Kao WY, Tsai TT, Shih CN (2003) Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica 41:415–419CrossRefGoogle Scholar
  116. Kao WY, Tsai TT, Tsai HC, Shih CN (2006) Responses of three Glycine species to salt stress. Environ Exp Bot 56:120–125CrossRefGoogle Scholar
  117. Kavas M, Kızıldoğan AK, Gökdemir G, Baloğlu MC (2015) Genome—wide investigation and expression analysis of AP2-ERF gene family in salt tolerant common bean. Excli J 14:1187–1206PubMedPubMedCentralGoogle Scholar
  118. Kavas M, Baloğlu MC, Atabay ES, Ziplar UT, Daşgan HY, Ünver T (2016) Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Mol Genet Genom 291:129–143CrossRefGoogle Scholar
  119. Khan HA, Siddique KHM, Munir R, Colmer TD (2015) Salt sensitivity in chickpea: growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. J Plant Physiol 182:1–12CrossRefPubMedGoogle Scholar
  120. Khan HA, Siddique KH, Colmer TD (2016) Salt sensitivity in chickpea is determined by sodium toxicity. Planta 244:623–637CrossRefPubMedGoogle Scholar
  121. Khan HA, Siddique KHM, Colmer TD (2017) Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. J Expt Bot 68:2001–2011CrossRefGoogle Scholar
  122. Kim JM, To TK, Nishioka T, Seki M (2010) Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ 33:604–611CrossRefPubMedGoogle Scholar
  123. Kim JM, Sasaki T, Ueda M, Sako K, Seki M (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114PubMedPubMedCentralGoogle Scholar
  124. Kim MJ, Kim HJ, Pak JH, Cho HS, Choi HK, Jung HW, Lee DH, Chung YS (2017) Overexpression of AtSZF2 from Arabidopsis showed enhanced tolerance to salt stress in soybean. Plant Breed Biotech 5:1–15CrossRefGoogle Scholar
  125. Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S, Srinivasan R, Jain PK (2014) Identification and characterization of wilt and salt stress-responsive MicroRNAs in chickpea through high-throughput sequencing. PLoS One 9:e108851CrossRefPubMedPubMedCentralGoogle Scholar
  126. Komatsu S, Yamamoto A, Nakamura T, Nouri MZ, Nanjo Y, Nishizawa K, Furukawa K (2011) Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques. J Prot Res 10:3993–4004CrossRefGoogle Scholar
  127. Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress–contribution of proteomics studies to understanding plant stress response. J Proteom 74:1301–1322CrossRefGoogle Scholar
  128. Kotula L, Khan HA, Quealy J, Turner NC, Vadez V, Siddique KH, Clode PL, Colmer TD (2015) Salt sensitivity in chickpea (Cicer arietinum L.): ions in reproductive tissues and yield components in contrasting genotypes. Plant Cell Environ 38:1565–1577CrossRefPubMedGoogle Scholar
  129. Krishnamurthy L, Turner NC, Gaur PM, Upadhyaya HD, Varshney RK, Siddique KHM, Vadez V (2011) Consistent variation across soil types in salinity resistance of a diverse range of chickpea (Cicer arietinum L.) genotypes. J Agron Crop Sci 197:214–227CrossRefGoogle Scholar
  130. Kumar S, Beena AS, Awana M, Singh A (2017a) Salt-Induced tissue-specific cytosine methylation down regulates expression of HKT genes in contrasting wheat (Triticum aestivum L.) genotypes. DNA Cell Biol 36:283–294CrossRefPubMedPubMedCentralGoogle Scholar
  131. Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A (2017b) Metabolomics for plant improvement: Status and prospects. Front Plant Sci 8:1302CrossRefPubMedPubMedCentralGoogle Scholar
  132. Kumari A, Das P, Parida AK, Agarwal PK (2015) Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front Plant Sci 6:1–20CrossRefGoogle Scholar
  133. L’taief B, Sifi B, Zaman-Allah M, Drevon JJ, Lachaâl M (2007) Effect of salinity on root-nodule conductance to the oxygen diffusion in the Cicer arietinum-Mesorhizobium ciceri symbiosis. J Plant Physiol 164:1028–1036CrossRefPubMedGoogle Scholar
  134. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059CrossRefGoogle Scholar
  135. Lämke J, Bäurle I (2017) Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol 18:124CrossRefPubMedPubMedCentralGoogle Scholar
  136. Lauter DJ, Munns DN (1986) Salt resistance of chickpea genotypes in solutions salinized with NaCl or Na2SO4. Plant Soil 95:271–279CrossRefGoogle Scholar
  137. Lee GJ, Carter TE, Villagarcia MR, Li Z, Zhou X, Gibbs MO, Boerma HR (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet 109:1610–1619CrossRefPubMedGoogle Scholar
  138. Lee JD, Shannon JG, Vuong TD, Nguyen HT (2009) Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) Accession PI483463. J Hered 100:798–801CrossRefPubMedGoogle Scholar
  139. Lenis JM, Ellersieck M, Blevins DG, Sleper DA, Nguyen HT, Dunn D, Lee JD, Shannon JG (2011) Differences in ion accumulation and salt tolerance among Glycine accessions. J Agron Crop Sci 197:302–310CrossRefGoogle Scholar
  140. Leonforte A, Forster JW, Redden RJ, Nicolas ME, Salisbury PA (2013a) Sources of high tolerance to salinity in pea (Pisum sativum L.). Euphytica 189:203–216CrossRefGoogle Scholar
  141. Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013b) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161CrossRefPubMedPubMedCentralGoogle Scholar
  142. Li W-Y, Wong F-L, Tsai S-N, Phang T-H, Shao G, Lam H-M (2006) Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (by)-2 cells. Plant Cell Environ 29:1122–1137CrossRefPubMedGoogle Scholar
  143. Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109CrossRefPubMedPubMedCentralGoogle Scholar
  144. Li YH, Zhao SC, Ma JX, Li D, Yan L, Li J, Qi XT, Guo XS, Zhang L, He WM, Chang RZ, Liang QS, Guo Y, Ye C, Wang XB, Tao Y, Guan RX, Wang JY, Liu YL, Jin LG, Zhang XQ, Liu ZX, Zhang LJ, Chen J, Wang KJ, Nielsen R, Li RQ, Chen PY, Li WB, Reif JC, Purugganan M, Wang J, Zhang MC, Wang J, Qiu LJ (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genom 14:579CrossRefGoogle Scholar
  145. Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS, Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang Y, Ruan H, Yeung CK, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ (2014a) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32:1045–1052CrossRefGoogle Scholar
  146. Li L, Zhang Q, Huang D (2014b) A review of imaging techniques for plant phenotyping. Sensors 14:20078–20111CrossRefGoogle Scholar
  147. Li J, Pu L, Han M, Zhu M, Zhang R, Xiang Y (2014c) Soil salinization research in China: advances and prospects. J Geograph Sci 24:943–960CrossRefGoogle Scholar
  148. Li M, Guo R, Jiao Y, Jin X, Zhang H, Shi L (2017a) Comparison of salt tolerance in Soja based on metabolomics of seedling roots. Front Plant Sci 8:1101CrossRefPubMedPubMedCentralGoogle Scholar
  149. Li MW, Xin D, Gao Y, Li KP, Fan K, Muñoz NB, Yung WS, Lam HM (2017b) Using genomic information to improve soybean adaptability to climate change. J Exp Bot 68:1823–1834PubMedGoogle Scholar
  150. Li H, Rasheed A, Hickey LT, He Z (2018) Fast-forwarding genetic gain. Trends Plant Sci 23:183–186CrossRefGoogle Scholar
  151. Liang W, Ma X, Wan P, Liu L (2018) Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun 495:286–291CrossRefPubMedGoogle Scholar
  152. Liao H, Wong FL, Phang TH, Cheung MY, Li WY, Shao G, Yan X, Lam HM (2003) GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene 318:103–111CrossRefPubMedGoogle Scholar
  153. Lieben L (2017) Spatial transcriptomics in plants. Nat Rev Genet 18:394CrossRefPubMedGoogle Scholar
  154. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30:301–304CrossRefPubMedGoogle Scholar
  155. Liu X, Hao L, Li D, Zhu L, Hu S (2015) Long non-coding RNAs and their biological roles in plants. Genom Proteom Bioinform 13:137–147CrossRefGoogle Scholar
  156. Liu Y, Yu L, Qu Y, Chen J, Liu X, Hong H, Liu Z, Chang R, Gilliham M, Qiu L, Guan R (2016) GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl-exclusion prior to Na+ exclusion but does not improve early vigor under salinity. Front Plant Sci 7:1485PubMedPubMedCentralGoogle Scholar
  157. Liu A, Xiao Z, Li MW, Wong FL, Yung WS, Ku YS, Wang Q, Wang X, Xie M, Yim AK, Chan TF, Lam HM (2018) Transcriptomic reprogramming in soybean seedlings under salt stress.Plant Cell Environ.
  158. Long RC, Li MN, Kang JM, Zhang TJ, Sun Y, Yang QC (2015) Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Physiol Plant 154:13–27CrossRefPubMedGoogle Scholar
  159. Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q (2016) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt Stress. Front Plant Sci 7:424PubMedPubMedCentralGoogle Scholar
  160. Lu KX, Cao BH, Feng XP, He Y, Jiang DA (2009) Photosynthetic response of salt-tolerant and sensitive soybean varieties. Photosyn 47:381–387CrossRefGoogle Scholar
  161. Lu Y, Lam H, Pi E, Zhan Q, Tsai S, Wang C, Kwan Y, Ngai S (2013) Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. J Agric Food Chem 36:8711–8721CrossRefGoogle Scholar
  162. Luo QY, Yu BJ, Liu YL, Zhang YM, Xue YL, Zhang Y (2004) The mixed inheritance analysis of salt tolerance in cultivars of Glycine max. Soybean Sci 23:239–244Google Scholar
  163. Luo Q, Yu B, Liu Y (2005) Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol 162:1003–1012CrossRefPubMedGoogle Scholar
  164. Maas EV, Poss JA (1989) Salt sensitive of cowpea at various growth stages. Irrig Sci 10:313–320Google Scholar
  165. Maliro MFA, McNeil D, Kollmorgen J, Pittock C, Redden B (2004) Screening chickpea (Cicer arietinumL.) and wild relatives germplasm from diverse sources for salt tolerance. New directions for a diverse planet. In: Proceedings of the 4th International Crop Science Congress, Brisbane, Australia (September 26–October 1). Available at:
  166. Maliro MFA, MacNeil D, Redden B, Kollmorgen JF, Pittock C (2008) Sampling strategies and screening of chickpea (Cicer arietinum L.) germplasm for salt tolerance. Genet Resour Crop Evol 55:53–63CrossRefGoogle Scholar
  167. Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618CrossRefGoogle Scholar
  168. Manchanda HR, Sharma SK (1989) Tolerance of chloride and sulphate salinity in chickpea (Cicer arietinum). J Agric Sci 113::407–410CrossRefGoogle Scholar
  169. Mantri NL, Ford R, Coram TE, Pang EC (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genom 8:303CrossRefGoogle Scholar
  170. Marconi G, Pace R, Traini A, Raggi L, Lutts S, Chiusano M, Guiducci M, Falcinelli M, Benincasa P, Albertini E (2013) Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera). PLoS One 8:e75597CrossRefPubMedPubMedCentralGoogle Scholar
  171. Massawe F, Mayes S, Cheng A (2016) Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci 21:P365–P368CrossRefGoogle Scholar
  172. Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17CrossRefPubMedGoogle Scholar
  173. Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Elarbi Aouani M, Polidoros AN (2011) Antioxidant gene-enzyme responses in Medicago truncatula genotypes with different degree of sensitivity to salinity. Physiol Plant 141:201–214CrossRefPubMedGoogle Scholar
  174. Mhadhbi H, Fotopoulos V, Mylona PV, Jebara M, Aouani ME, Polidoros AN (2013) Alternative oxidase 1 (Aox1) gene expression in roots of Medicago truncatula is a genotype-specific component of salt stress tolerance. J Plant Physiol 170:111–114CrossRefPubMedGoogle Scholar
  175. Moghaddam SM, Mamidi S, Osorno JM, Lee R, Brick M, Kelly J, Miklas P, Urrea C, Song Q, Cregan P, Grimwood J, Schmutz J, McClean PE (2016) Genome-wide association study identifies candidate loci underlying agronomic traits in a middle American diversity panel of common bean. Plant Genome. CrossRefPubMedGoogle Scholar
  176. Mokhtari F, Rafiei F, Shabani L, Shiran B (2017) Differential expression pattern of transcription factors across annual Medicago genotypes in response to salinity stress. Biol Plant 61:227–234CrossRefGoogle Scholar
  177. Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon JJ, Winter P, Kahl G (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11:31CrossRefPubMedPubMedCentralGoogle Scholar
  178. Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673CrossRefPubMedGoogle Scholar
  179. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  180. Muñoz N, Ailin Liu A, Kan L, Li MW, Lam HM (2017) Potential uses of wild germplasms of grain legumes for crop improvement. Int J Mol Sci 18:328CrossRefPubMedCentralGoogle Scholar
  181. Muñoz-Amatriaín M, Mirebrahim H, Xu P, Wanamaker SI, Luo M, Alhakami H, Alpert M, Atokple I, Batieno BJ, Boukar O, Bozdag S, Cisse N, Drabo I, Ehlers JD, Farmer A, Fatokun C, Gu YQ, Guo YN, Huynh BL, Jackson SA, Kusi F, Lawley CT, Lucas MR, Ma Y, Timko MP, Wu J, You F, Barkley NA, Roberts PA, Lonardi S, Close TJ (2017) Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J 89:1042–1054CrossRefGoogle Scholar
  182. Murillo-Amador B, Troyo-Diéguez E, López-Cortés A, Jones HG, Ayala-Chairez F, Tinoco-Ojanguren CL (2001) Salt tolerance of cowpea genotypes in the emergence stage. Austra J Expt Agric 41:81–88CrossRefGoogle Scholar
  183. Murillo-Amador B, Troyo-Die´guez E, Garcı´a-Herna´ndez JL, Lo´pez-Aguilar R, A´vila-Serrano NY, Zamora-Salgado S, Rueda-Puente EO, Kaya C (2006) Effect of NaCl salinity in the genotypic variation of cowpea (Vigna unguiculata) during early vegetative growth. Sci Hort 108:423–431CrossRefGoogle Scholar
  184. Nabi F, Chaker-Haddadj A, Tellah S, Ghalem A, Ounane G, Ghalmi N, Djebbar R, Ounane SM (2017) Evaluation of Algerian cowpea genotypes for salt tolerance at germination stage. Adv Environ Biol 11:79–88Google Scholar
  185. Najafi F, Khavari-Nejad RA, Rastgar-jazii F, Sticklen M (2006) Physiological changes in pea (Pisum sativum L. cv. Green Arrow) under NaCl salinity. Pak J Biol Sci 9:974–978CrossRefGoogle Scholar
  186. Najafi F, Khavari-Nejad RA, Rastgar-jazii F, Sticklen M (2007) Growth and some physiological attributes of pea (Pisum sativum L.) as affected by salinity. Pak J Biol Sci 10:2752–2755CrossRefPubMedGoogle Scholar
  187. Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11CrossRefPubMedGoogle Scholar
  188. Ngara R, Ndimba BK (2014) Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics 14:611–621CrossRefPubMedGoogle Scholar
  189. Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166:1764–1774CrossRefPubMedGoogle Scholar
  190. Özge Ç, Atak Ç (2012) Evaluation of proline accumulation and ∆1-pyrroline-5-carboxylate synthetase (P5CS) gene expression during salinity stress in two soybean (Glycine max L. Merr.) Varieties. Pol J Environ Stud 3:559–564Google Scholar
  191. Pan WJ, Tao JJ, Cheng T, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9:1337–1340CrossRefPubMedGoogle Scholar
  192. Pandey G, Sharma N, Sahu PP, Prasad M (2016a) Chromatin-based epigenetic regulation of plant abiotic stress response. Curr Genom 17:490–498CrossRefGoogle Scholar
  193. Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK (2016b) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455PubMedPubMedCentralGoogle Scholar
  194. Pandolfi C, Mancusoa S, Shabala S (2012) Physiology of acclimation to salinity stress in pea (Pisum sativum). Environ Expt Bot 84:44–51CrossRefGoogle Scholar
  195. Pantalone VR, Kenworthy WJ, Slauther LH, James BR (1997) Chloride tolerance in soybean and perennial Glycine a ccessions. Euphytica 97:235–239CrossRefGoogle Scholar
  196. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349CrossRefGoogle Scholar
  197. Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen HT (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep 6:19199CrossRefPubMedPubMedCentralGoogle Scholar
  198. Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tissue Organ Cult 105:233–242CrossRefGoogle Scholar
  199. Pennisi E (2013) The CRISPR craze. Science 341:833–836CrossRefPubMedGoogle Scholar
  200. Phang TH, Shao G, Lam HM (2008) Salt tolerance in soybean. J Integr Plant Biol 50:1196–1212CrossRefPubMedGoogle Scholar
  201. Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y, Wang H, Tsai SN, Ngai S, Du L (2016) Mechanisms of soybean roots’ tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol Cell Proteom 15:266–288CrossRefGoogle Scholar
  202. Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KHM, Colmer TD, Turner NC, Varshney RK, Vadez V (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol 15:124CrossRefPubMedPubMedCentralGoogle Scholar
  203. Qi X, Li MW, Xie M, Liu X, Ni M, Shao G, Song C, Kay-Yuen Yim A, Tao Y, Wong FL, Isobe S, Wong CF, Wong KS, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, Zhou F, Phang TH, Liu X, Tong SW, Chan TF, Yiu SM, Tabata S, Wang J, Xu X, Lam HM (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5:4340CrossRefPubMedPubMedCentralGoogle Scholar
  204. Qiu PC, Zhang WB, Liu CY, Jiang HW, Li CD, Fan HM, Zeng QL, Hu GH, Cheng QS (2011) QTL identification of salt tolerance in germination stage of soybean. Legume Genom Genet 2:20–27Google Scholar
  205. Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney (2015) Proteomics and Metabolomics: two emerging areas for legume Improvement. Front Plant Sci 6:1116PubMedPubMedCentralGoogle Scholar
  206. Rathi D, Gayen D, Gayali S, Chakraborty S, Chakraborty N (2016) Legume proteomics: progress, prospects, and challenges. Proteomics 16:310–327CrossRefPubMedGoogle Scholar
  207. Ravelombola W, Shi A, Weng Y, Mou B, Motes D, John Clark J, Chen P, Srivastava V, Qin J, Dong L, Yang W, Bhattarai G, Sugihara (2017) Association analysis of salt tolerance in cowpea (Vigna unguiculata (L.) Walp) at germination and seedling stages. Theor Appl Genet 131:79–91CrossRefPubMedGoogle Scholar
  208. Ren S, Weeda S, Li H, Whitehead B, Guo Y, Atalay A, Parry J (2012) Salt tolerance in soybean WF-7 is partially regulated by ABA and ROS signaling and involves withholding toxic Cl ions from aerial tissues. Plant Cell Rep 31:1527–1533CrossRefPubMedGoogle Scholar
  209. Rendón-Anaya M, Montero-Vargas JM, Saburido-Álvarez S, Vlasova A, Capella-Gutierrez S, Ordaz-Ortiz JJ, Aguilar OM, Vianello-Brondani RP, Santalla M, Delaye L, Gabaldón T, Gepts P, Winkler R, Guigó R, Delgado-Salinas A, Herrera-Estrella A (2017) Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol 18:60CrossRefPubMedPubMedCentralGoogle Scholar
  210. Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124CrossRefPubMedGoogle Scholar
  211. Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006a) Salt stress response in rice: genetics, molecular biology, and comparative genomics. Funct Integr Genom 6:263–284CrossRefGoogle Scholar
  212. Sahi C, Singh A, Blumwald E, Grover A (2006b) Beyond osmolytes and transporters: novel plant salt stress tolerance-related genes from transcriptional profiling data. Physiol Plant 127:1–9CrossRefGoogle Scholar
  213. Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733CrossRefPubMedGoogle Scholar
  214. Samineni S, Siddique KHM, Gaur PM, Colmer TD (2011) Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): Podding is a particularly sensitive stage. Environ Expt Bot 71:260–268CrossRefGoogle Scholar
  215. Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219PubMedGoogle Scholar
  216. Sanchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Krämer U, Kopka J, Udvardi MK (2009) Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J 53:973–987CrossRefGoogle Scholar
  217. Sanchez DH, Szymanski J, Erban A, Udvardi MK, Kopka J (2010) Mining for robust transcriptional and metabolic responses to long-term salt stress: a case study on the model legume Lotus japonicus. Plant Cell Environ 33:468–480CrossRefPubMedGoogle Scholar
  218. Sanchez DH, Pieckenstain FL, Escaray F, Erban A, Kraemer U, Udvardi MK, Kopka J (2011) Comparative ionomics and metabolomics in extremophile and glycophytic Lotus species under salt stress challenge the metabolic pre-adaptation hypothesis. Plant Cell Environ 34:605–617CrossRefPubMedGoogle Scholar
  219. Saxena AK, Rewari RB (1991) Influence of phosphate and zinc on growth, nodulation and mineral composition of chickpea (Cicer arietinum L.) under salt stress. World J Microbiol Biotech 7::202–205CrossRefGoogle Scholar
  220. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183CrossRefGoogle Scholar
  221. Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MM, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713CrossRefGoogle Scholar
  222. Serraj R, Krishnamurthy L, Upadhyaya HD (2004) Screening chickpea mini-core germplasm for tolerance to soil salinity. Int Chickpea Pigeonpea Newslett 11:29–32Google Scholar
  223. Shabala S (2009) Salinity and programmed cell death: unravelling mechanisms for ion specific signalling. J Expt Bot 60:709–712CrossRefGoogle Scholar
  224. Shahid MA, Pervez MA, Balal RM, Abbas T, Ayyub CM, Mattson NS, Riaz A, Iqbal Z (2012a) Screening of pea (Pisum sativum L.) genotypes for salt tolerance based on early growth stage attributes and leaf inorganic osmolytes. Austra J Crop Sci 6:1324–1331Google Scholar
  225. Shahid MA, Balal RM, Pervez MA, Abbas T, Ashfaq M, Ghazanfar U, Afzal M, Rashid A, Garcia-Sanchez F, Mattson NS (2012b) Differential response of pea (Pisum sativum L.) genotypes to salt stress in relation to the growth, physiological attributes antioxidant activity and organic solutes. Austra J Crop Sci 6:828–838Google Scholar
  226. Shanon MC (1986) New insights in plant breeding efforts for improved salt tolerance. Hort Technol 6:96–99Google Scholar
  227. Shao GH, Song JZ, Liu HL (1986) Preliminary studies on the evaluation of salt tolerance in soybean varieties. Acta Agron Sin 6:30–35Google Scholar
  228. Shao GH, Wan CW, Chang RZ, ChenYW (1993) Preliminary study on the damage of plasma membrane caused by salt stress. Crops 1:39–40Google Scholar
  229. Shao GH, Chang RZ, Chen YW, Yan SR (1994) Study on inheritance of salt tolerance in soybean. Acta Agron Sin 20:721–726Google Scholar
  230. Sharifia M, Ghorbanlib M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151CrossRefGoogle Scholar
  231. Sharma S (2017) Prebreeding using wild species for genetic enhancement of grain legumes at ICRISAT. Crop Sci 57:1132–1144CrossRefGoogle Scholar
  232. Sharma SK, Kumar S (1990) Effect of salinization on growth and distribution of Na+ and Cl in two genotypes of chickpea. Indian J Plant Physiol 33:269–274Google Scholar
  233. Shelden MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 4:123CrossRefPubMedPubMedCentralGoogle Scholar
  234. Shi X, Yan L, Yang C, Yan W, Moseley DO, Wang T, Liu B, Di R, Chen P, Zhang M (2018) Identification of a major quantitative trait locus underlying salt tolerance in ‘Jidou 12’ soybean cultivar. BMC Res Notes 11:95CrossRefPubMedPubMedCentralGoogle Scholar
  235. Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208CrossRefPubMedGoogle Scholar
  236. Silveira JAG, Carvalho FEL (2016) Proteomics, photosynthesis and salt resistance in crops: an integrative view. J Proteomics 143:24–35CrossRefPubMedGoogle Scholar
  237. Singh AK (2004) The physiology of salt tolerance in four genotypes of chickpea during germination. J Agric Sci Technol 6:87–93Google Scholar
  238. Singh AK, Ganapathysubramanian B, Sarkar S, Singh A (2018) Deep learning for plant stress phenotyping: trends and future perspectives. Trends Plant Sci 23:883–898CrossRefGoogle Scholar
  239. Slemi N, Lachaal M, Andelly C, Soltani A, Hajji M (2001) Physiological behaviour of two chickpea Tunisian varieties irrigated with saline nutrient solution. Dev Plant Soil Sci 92:408–409Google Scholar
  240. Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Setsuko K (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19CrossRefPubMedPubMedCentralGoogle Scholar
  241. Song Y, Ji D, Li S, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274CrossRefPubMedPubMedCentralGoogle Scholar
  242. Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:e54985CrossRefPubMedPubMedCentralGoogle Scholar
  243. Sumner LW, Mendes P, Dixon RA (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochem 62:817–836CrossRefGoogle Scholar
  244. Sun YX, Wang D, Bai YL, Wang NN, Wang Y (2006) Studies on the over expression of the soybean GmNHX1 in Lotus corniculatus: the reduced Na+ level is the basis of the increased salt tolerance. Chin Sci Bull 51:1306–1315CrossRefGoogle Scholar
  245. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066CrossRefPubMedGoogle Scholar
  246. Tejera NA, Soussi M, Lluch C (2006) Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environ Expt Bot 58:17–24CrossRefGoogle Scholar
  247. Thiam M, Champion A, Diouf D, Ourèye SY M (2013) NaCl effects on in vitro germination and growth of some Senegalese cowpea (Vigna unguiculata (L.) Walp.) cultivars. ISRN Biotechnology 2013:11Google Scholar
  248. Tsai SN (2003) Cloning and characterization of ion transporters genes from a salt-tolerant soybean variety. M.Phil. Thesis. The Chinese University of Hong KongGoogle Scholar
  249. Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L, Kaur J, Singh G, Siddique KHM, Vadez V (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 365:347–361CrossRefGoogle Scholar
  250. Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121:229–236CrossRefPubMedGoogle Scholar
  251. Tuyen DD, Zhang HM, Xu DH (2013) Validation and high-resolution mapping of a major quantitative trait locus for alkaline salt tolerance in soybean using residual heterozygous line. Mol Breed 31:79–86CrossRefGoogle Scholar
  252. Umezawa T, Shimizu K, Kato M, Ueda T (2000) Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiol Plant 110:59–66CrossRefGoogle Scholar
  253. Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, Varshney RK, Turner NC, Siddique KHM (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res 104:123–129CrossRefGoogle Scholar
  254. Vadez V, Rashmi M, Sindhu K, Muralidharan M, Pushpavalli R, Turner NC, Krishnamurthy L, Gaur PM, Colmer TD (2012a) Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea. Eur J Agron 41:42–51CrossRefGoogle Scholar
  255. Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC, Siddique KHM, Gaur PM, Varshney RK (2012b) Assessment of ICCV 2 9 JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol Breed 30:9–21CrossRefGoogle Scholar
  256. Valencia R, Chen P, Ishibashi T, Conatser M (2008) A rapid and effective method for screening salt tolerance in soybean. Crop Sci 48:1773–1779CrossRefGoogle Scholar
  257. Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KH, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genom 10:523CrossRefGoogle Scholar
  258. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246CrossRefGoogle Scholar
  259. Verma M, Kumar V, Patel RK, Garg R, Jain M (2015) CTDB: an integrated chickpea transcriptome database for functional and applied genomics. PLoS One 10:e0136880CrossRefPubMedPubMedCentralGoogle Scholar
  260. Vu WT, Chang PL, Moriuchi KS, Friesen ML (2015) Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula. BMC Evol Biol 15:59CrossRefPubMedPubMedCentralGoogle Scholar
  261. Wang D, Shannon MC (1999) Emergence and seedling growth of soybean cultivars and maturity groups under salinity. Plant Soil 214:117–124CrossRefGoogle Scholar
  262. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14CrossRefPubMedGoogle Scholar
  263. Wang M, Qin L, Xie C, Li W, Yuan J, Kong L, Yu W, Xia G, Liu S (2014) Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol 55:1354–1365CrossRefPubMedGoogle Scholar
  264. Wang W, Huang F, Qin Q, Zhao X, Li Z, Fu B (2015) Comparative analysis of DNA methylation changes in two rice genotypes under salt stress and subsequent recovery. Biochem Biophys Res Commun 465:790–796CrossRefPubMedGoogle Scholar
  265. Wang C, Hu S, Gardner C, Lubberstedt T (2017) Emerging avenues for utilization of exotic germplasm. Trends Plant Sci 22:624–637CrossRefPubMedGoogle Scholar
  266. Wang Y, Jiang L, Chen J, Tao L, An Y, Cai H, Guo C (2018) Over expression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS One 13:e0192382CrossRefPubMedPubMedCentralGoogle Scholar
  267. Win KT, Oo AZ (2015) Genotypic difference in salinity tolerance during early vegetative growth of cowpea (Vigna unguiculata L. Walp.) from Myanmar. Biocat Agril Biotechnol 4:449–455CrossRefGoogle Scholar
  268. Wong TH, Li MW, Yao XQ, Lam HM (2013) The GmCLC1 protein from soybean functions as a chloride ion transporter. J Plant Physiol 170:101–104CrossRefPubMedGoogle Scholar
  269. Wu YB, Yu BJ (2009) Gene expression of Cl) channel and its relation to chloride tolerance of Glycine max, Glycine soja and their hybrid seedlings. J Nanjing Agri Univ 32:67–71 (in Chinese)Google Scholar
  270. Wu D, Shen Q, Cai S, Chen ZH, Dai F, Zhang G (2013) Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physiol 54:1976–1988CrossRefPubMedGoogle Scholar
  271. Wu G, Zhou Z, Chen P, Tang X, Shao H, Wang H (2014) Comparative eco physiological study of salt stress for wild and cultivated soybean species from the Yellow River Delta, China. Sci World J 2014:651745Google Scholar
  272. Xu D, Tuyen D (2010) Genetic studies on saline and sodic tolerances in soybean. Breed Sci 61:559–565CrossRefGoogle Scholar
  273. Xu P, Wu X, Muñoz-Amatriaín M, Wang B, Wu X, Hu Y, Huynh BL, Close TJ, Roberts PA, Zhou W, Lu Z, Li G (2017) Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Plant Biotechnol J 15:547–557CrossRefGoogle Scholar
  274. Yang J (2008) Development and prospect of the research on salt-affected soils in China. Acta Pedol Sin 45:837–845 (in Chinese)Google Scholar
  275. Yasuta Y, Kokubun M (2014) Salinity tolerance of super-nodulating soybean Genotype En-b0-1. Plant Prod Sci 17:32–40CrossRefGoogle Scholar
  276. Yu BJ, Lam HM, Shao GH, Liu YL (2005) Effects of salinity on activities of H+-ATPase, H+-PPase and membrane lipid composition in plasma membrane and tonoplast vesicles isolated from soybean (Glycine max L.) seedlings. J Environ Sci 17:259–262Google Scholar
  277. Yu Y, Wang N, Hu R, Xiang F (2016) Genome–wide identification of soybean WRKY transcription factors in response to salt stress. Springer Plus 5:920CrossRefPubMedGoogle Scholar
  278. Zahaf O, Blanchet S, de Zélicourt A, Alunni B, Plet J, Laffont C, de Lorenzo L, Imbeaud S, Ichanté JL, Diet A, Badri M, Zabalza A, González EM, Delacroix H, Gruber V, Frugier F, Crespi M (2012) Comparative transcriptomic analysis of salt adaptation in roots of contrasting Medicago truncatula genotypes. Mol Plant 5:1068–1081CrossRefPubMedGoogle Scholar
  279. Zargar SM, Mahajan R, Nazir M, Nagar P, Kim ST, Rai V, Masi A, Ahmad SM, Shah RA, Ganai NA, Agrawal GK, Rakwal R (2017) Common bean proteomics: Present status and future strategies. J Proteom S1874-3919:30104–30105Google Scholar
  280. Zeng A, Chen P, Korth K, Hancock F, Pereira A, Brye K, Wu C, Shi A (2017) Genome-wide association study (GWAS) of salt tolerance in worldwide soybean germplasm lines. Mol Breed 37:30CrossRefGoogle Scholar
  281. Zeng A, Chen P, Korth KL, Ping J, Thomas J, Wu C, Srivastava S, Pereira A, Hancock F, Brye K, Ma J (2018) RNA sequencing analysis of salt tolerance in soybean (Glycine max). Genomics 4(18)30196Google Scholar
  282. Zhang XK, Zhou QH, Cao JH, Yu BJ (2011) Differential Cl)/salt tolerance and NaCl-induced alternations of tissue and cellular ion fluxes in Glycine max, Glycine soja and their Hybrid Seedlings. J Agron Crop Sci 197:329–339CrossRefGoogle Scholar
  283. Zhang WJ, Niu Y, Bu SH, Li M, Feng JY, Zhang J, Yang SX, Odinga MM, Wei SP, Liu XF, Zhang YM (2014) Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One 9:e84750CrossRefPubMedPubMedCentralGoogle Scholar
  284. Zhang J, Yang D, Li M, Shi L (2016) Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress. PLoS One 11:e0159622CrossRefPubMedPubMedCentralGoogle Scholar
  285. Zhao SP, Lu D, Yu TF, Ji YJ, Zheng WJ, Zhang SX, Chai SC, Chen ZY, Cui XY (2017) Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 involvement in high salt and drought stresses. Plant Physiol Biochem 119:132–146CrossRefPubMedGoogle Scholar
  286. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:408–414CrossRefGoogle Scholar
  287. Zhu H, Choi H, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ICAR-Indian Institute of Pulses Research (IIPR)KanpurIndia
  2. 2.National Institute of Plant Genome Research (NIPGR)New DelhiIndia

Personalised recommendations