Advertisement

Plant Cell Reports

, Volume 37, Issue 12, pp 1707–1712 | Cite as

CRISPR/Cas13a targeting of RNA virus in plants

  • Kulbhushan Chaudhary
Opinion Paper

Abstract

Key message

This approach is quite promising to control plant viral diseases and create synthetic networks to better understand the structure/function relationship in RNA and proteins.

Abstract

Plant viruses are obligate intracellular parasites which causes enormous losses in crop yield worldwide. These viruses replicate into infected cells by highjacking host cellular machinery. Over the last two decades, diverse approaches such as conventional breeding, transgenic approach and gene silencing strategies have been used to control RNA viruses, but escaped due to high rate of mutation. Recently, a novel CRISPR enzyme, called Cas13a, has been used engineered to confer RNA viruses resistance in plants. Here, we summarize the recent breakthrough of CRISPR/Cas13a and its applications in RNA biology.

Keywords

CRISPR/Cas13a Genome editing Potyvirus RNA Translation regulation 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that they have no conflict of interest.

References

  1. Abudayyeh OO, Gootenberg JS, Konermann S, Julia J, Slymaker IM, Cox DBT et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573.  https://doi.org/10.1126/science.aaf5573 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ et al (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284.  https://doi.org/10.1038/nature24049 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adams MJ, Antoniw JF, Beaudoin F (2005) Overview and analysis of the polyprotein cleavage sites in the family potyviridae. Mol Plant Pathol 6:471–487.  https://doi.org/10.1111/j.1364-3703.2005.00296.x CrossRefPubMedGoogle Scholar
  4. Adams M, Zerbini F, French R, Rabenstein F, Stenger D, Valkonen J (2011) Family Potyviridae. In: Virus taxonomy, 9th report of the international committee for taxonomy of viruses. Elsevier Academic Press, San Diego, 1069–1089Google Scholar
  5. Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ et al (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1–9.  https://doi.org/10.1186/s13059-017-1381-1 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anantharaman V, Makarova KS, Burroughs AM, Koonin EV, Aravind L (2013) Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomics conflicts, defense, pathogenesis and RNA processing. Biol Direct 8:15.  https://doi.org/10.1186/1745-6150-8-15 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bastet A, Robaglia C, Gallois JL (2017) eIF4E resistance: natural variation should guide gene editing. Trends Plant Sci 22:411–419.  https://doi.org/10.1016/j.tplants.2017.01.008 CrossRefPubMedGoogle Scholar
  8. Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ (2010) Plasmodesmata: gateways to local and systemic virus infection. Mol Plant Microbe Interact 23:1403–1412.  https://doi.org/10.1094/MPMI-05-10-0116 CrossRefPubMedGoogle Scholar
  9. Blanc S, Lopez-Moya JJ, Wang RY, Garcia-Lampasona S, Thornbury DW, Pirone TP (1997) A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231:141–147.  https://doi.org/10.1006/viro.1997.8521 CrossRefPubMedGoogle Scholar
  10. Carroll TW, Mayhew DW (1976) Anther and pollen infection in relation to the pollen and seed transmissibility of two strains of barley stripe mosaic virus in barley. Can J Bot 54:1604–1621.  https://doi.org/10.1139/b76-173 CrossRefGoogle Scholar
  11. Cooke A, Prigge A, Opperman L, Wickens M (2011) Targeted translational regulation using the PUF protein family scaffold. Proc Natl Acad Sci USA 108:15870–15875.  https://doi.org/10.1073/pnas.1105151108 CrossRefPubMedGoogle Scholar
  12. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellener MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027.  https://doi.org/10.1126/science.aaq0180 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644.  https://doi.org/10.1038/nri2824 CrossRefPubMedGoogle Scholar
  14. Doering-Saad C, Newbury HJ, Bale JS, Pritchard J (2002) Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot 53:631–637.  https://doi.org/10.3410/f.1005577.66004 CrossRefPubMedGoogle Scholar
  15. Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15.  https://doi.org/10.1038/nrm2015.2 CrossRefPubMedGoogle Scholar
  16. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096.  https://doi.org/10.1126/science.1258096 CrossRefPubMedGoogle Scholar
  17. Dougherty WG, Carrington JC (1988) Expression and function of potyviral gene products. Annu Rev Phytopathol 26:123–143.  https://doi.org/10.1146/annurev.py.26.090188.001011 CrossRefGoogle Scholar
  18. East-Seletsky A, O’Connell MR, Knight SC, Burstein D, Cate JH, Tjian R, Doudna JA (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538:270–273.  https://doi.org/10.1038/nature19802 CrossRefPubMedPubMedCentralGoogle Scholar
  19. East-Seletsky A, O’Connell MR, Burstein D, Knott GJ, Doudna JA (2017) RNA targeting by functionally orthogonal type VI-A CRISPR-Cas enzymes. Mol Cell 66:373–383.  https://doi.org/10.1016/j.molcel.2017.04.008 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gibbs A, Ohshima K (2010) Potyviruses and the digital revolution. Annu Rev Phytopathol 48:205–223.  https://doi.org/10.1146/annurev-phyto-073009-114404 CrossRefPubMedGoogle Scholar
  21. Gibbs AJ, Mackenzie AM, Gibbs MJ (2003) The “potyvirid primers” will probably provide phylogenetically informative DNA fragments from all species of Potyviridae. J Viro Methods 12:41–44.  https://doi.org/10.1016/S0166-0934(03)00189-7 CrossRefGoogle Scholar
  22. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442.  https://doi.org/10.1126/sciencs.aam9321 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hari V (1981) The RNA of tobacco etch virus: further characterization and detection of protein linked to RNA. Virology 112:391–399.  https://doi.org/10.1016/0042-6822(81)90286-5 CrossRefPubMedGoogle Scholar
  24. Harrison BD (2002) Virus variation in relation to resistance-breaking in plants. Euphytica 124:181–192.  https://doi.org/10.1023/A:1015630516425 CrossRefGoogle Scholar
  25. Heinlein M (2015) Plant virus replication and movement. Virology 480:657–671.  https://doi.org/10.1016/j.virol.2015.01.025 CrossRefGoogle Scholar
  26. Hilton IB, D’lppolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517.  https://doi.org/10.1038/nbt.3199 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hipper C, Brault V, Ziegler-Graff V, Revers F (2013) Viral and cellular factors involved in phloem transport of plant viruses. Front Plant Sci 4:154.  https://doi.org/10.3389/fpls.2013.00154 CrossRefPubMedPubMedCentralGoogle Scholar
  28. ICTV (2015) ICTV master species list 2015 v1. https://talk.ictvonline.org/files/master-species-lists/m/msl/5945. Accessed 20 Aug 2014
  29. LaRussa MF, Qi LS (2015) The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol 35:3800–3809.  https://doi.org/10.1128/MCB.00512-15 CrossRefGoogle Scholar
  30. Liu L, Li X, Ma J, Li Z, You L, Wang J et al (2017a) The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170:714–726.  https://doi.org/10.1016/j.cell.2017.06.050 CrossRefPubMedGoogle Scholar
  31. Liu L, Li X, Wang J, Wang M, Chen P, Yin M et al (2017b) Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168:121–134.  https://doi.org/10.1016/j.cell.2016.12.031 CrossRefPubMedGoogle Scholar
  32. Lucas WJ, Ham BK, Kim JY (2009) Plasmodesmata-bridging the gap between neighboring plant cells. Trends Cell Biol 19:405–503.  https://doi.org/10.1016/j.tcb.2009.07.003 CrossRefGoogle Scholar
  33. Mackay JP, Font J, Segal DJ (2011) The prospects for designer single-stranded RNA-binding proteins. Nat Struct Mol Biol 18:256–262.  https://doi.org/10.1038/nsmb.2005 CrossRefPubMedGoogle Scholar
  34. Mahas A, Jr Stewart C, Mahfouz MM (2018) Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation. Biotechnol Adv 36:295–310.  https://doi.org/10.1016/j.biotechadv.2017.11.008 CrossRefPubMedGoogle Scholar
  35. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ et al (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736.  https://doi.org/10.1038/nrmicro3569 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mandadi KK, Scholthof KBJ (2013) Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25:1489–1505.  https://doi.org/10.1105/tpc.113.111658 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, Yeo GW (2016) Programmable RNA tracking in live cell with CRISPR/Cas9. Cell 165:488–496.  https://doi.org/10.1016/j.cell.2016.02.054 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nicaise V (2014) Crop immunity against viruses: outcomes and future challenges. Front Plant Sci 5:660.  https://doi.org/10.3389/fpls.2014.00660 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690.  https://doi.org/10.1111/j.1365-313X.2007.03328.x CrossRefPubMedGoogle Scholar
  40. Prins M, Lammer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83.  https://doi.org/10.1111/j.1364-3703.2007.00447.x CrossRefPubMedGoogle Scholar
  41. Revers F, Garcia JA (2015) Molecular biology of potyviruses. Adv Virus Res 92:101–199.  https://doi.org/10.1016/bs.aivir.2014.11.006 CrossRefPubMedGoogle Scholar
  42. Riechmann J, Lain S, Garcia JA (1990) Infectious in vitro transcripts from a plum pox potyvirus cDNA clone. Virology 177:710–716.  https://doi.org/10.1016/0042-6822(90)90537-2 CrossRefPubMedGoogle Scholar
  43. Riechmann J, Lain S, Garcia JA (1992) Highlights and prospects of potyvirus molecular biology. J Gen Virol 73:1–16.  https://doi.org/10.1099/0022-1317-73-1-1 CrossRefPubMedGoogle Scholar
  44. Sanfacon H (2015) Plant translation factors and virus resistance. Viruses 7:3392–3419.  https://doi.org/10.3390/v7072778 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E et al (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas system. Mol Cell 60:383–397.  https://doi.org/10.1016/j.molcel.2015.10.008 CrossRefGoogle Scholar
  46. Shmakov S, Smargon A, Scott D, Cov D, Pyzocha N, Yan W et al (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15:169–182.  https://doi.org/10.1038/nrmicro.2016.184 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Simon-Mateo C, Gracia JA (2011) Antiviral strategies in plants based on RNA silencing. Biochim Biophys Acta 1809:722–731.  https://doi.org/10.1016/j.bbagrm.2011.05.011 CrossRefPubMedGoogle Scholar
  48. Thao NP, Trans LS (2016) Enhancement of plant productivity in the post-genomics era. Curr Genom 17:295–296.  https://doi.org/10.2174/138920291704160607182507 CrossRefGoogle Scholar
  49. Tilsner J, Linnik O, Christensen NM, Bell K, Roberts IM, Lacomme C, Oparka KJ (2009) Live-cell imaging of viral RNA genomes using a pumilio-based reporter. Plant J 57:758–770.  https://doi.org/10.1111/j.1365-313X.2008.03720.x CrossRefPubMedGoogle Scholar
  50. Wang Y, Cheong CG, Hall TM, Wang Z (2009) Engineering splicing factors with designed specificities. Nat Methods 6:825–830.  https://doi.org/10.1038/nmeth.1379 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wei H, Wang Z (2015) Engineering RNA-binding proteins with diverse activities. Wiley Interdiscip Rev RNA 6:597–613.  https://doi.org/10.1002/wrna.1296 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Centre for Plant Virology, Division of Plant PathologyICAR-Indian Agricultural Research InstituteNew DelhiIndia

Personalised recommendations