Plant Cell Reports

, Volume 37, Issue 1, pp 61–75 | Cite as

Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance

  • Vinay KumarEmail author
  • Tushar Khare
  • Varsha Shriram
  • Shabir H. WaniEmail author


Saline environment cues distort the plant growth, development and crop yield. Epigenetics has emerged as one of the prime themes in plant functional genomics for molecular-stress-physiology research, as copious studies have provided new visions into the epigenetic control of stress adaptations. The epigenetic control is associated with the regulation of the expression of stress-related genes which also comprises many steady alterations inherited in next cellular generation as stress memory. These epigenetic amendments also implicate induction of small RNA (sRNA)-mediated fine-tuning of transcriptional and post-transcriptional regulations of gene expression. These tiny (19–24 nt) RNA species, particularly microRNAs (miRNAs) besides endogenous small interfering RNA (siRNA) have emerged as important responsive entities for epigenetic modulation of salt-stress effects on plants. There is a recent upsurge in development of tools and databases useful for prediction, identification and validation of small RNAs (sRNAs) and their target messenger RNAs (mRNAs). Therefore, these small but key regulatory molecules have received a wide attention in post-genomic era as potential targets for engineering stress tolerance in major glycophytic crops, though it is yet to be explored optimally. This review aims to provide critical updates on plant sRNAs as key epigenetic regulators of plant salt-stress responses, their target prediction and validation, computational tools and databases available for plant small RNAs, besides discussing their roles in salt-stress regulatory networks and adaptive mechanisms in plants, with special emphasis on their exploration for engineering salinity tolerance in plants.


Salinity stress Epigenetic regulations Non-coding RNAs microRNA Short interfering RNAs Post-transcriptional regulation Stress responses Genetic engineering 



The research in VK’s lab is supported through the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India funds (grant number SR/FT/LS-93/2011 and EMR/2016/003,896). The authors acknowledge the use of facilities created under DST-FIST program and Star College Scheme Department of Biotechnology (DBT), Government of India, implemented at Modern College, Ganeshkhind, Pune.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Al-Lawati A, Al-Bahry S, Victor R, Al-Lawati AH, Yaish MW (2016) Salt stress alters DNA methylation levels in alfalfa (Medicago spp). Genet Mol Res 15:15018299. doi: 10.4238/gmr.15018299 PubMedCrossRefGoogle Scholar
  2. Amor BB, Wirth S, Merchan F, Laporte P, Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69. doi: 10.1101/gr.080275.108 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Angers B, Castonguay E, Massicotte R (2010) Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol 19:1283–1295. doi: 10.1111/j.1365-294X.2010.04580.x PubMedCrossRefGoogle Scholar
  4. Banerjee S, Sirohi A, Ansari AA, Gill SS (2017) Role of small RNAs in abiotic stress responses in plants. Plant Gene. doi: 10.1016/j.plgene.2017.04.005 Google Scholar
  5. Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662. doi: 10.1016/j.devcel.2004.10.003 PubMedCrossRefGoogle Scholar
  6. Barrera-Figueroa BE, Gao L, Wu Z, Zhou X, Zhu J, Jin H, Liu R, Zhu JK (2012) High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC Plant Biol 12:132. doi: 10.1186/1471-2229-12-132 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baras AS, Mitchell CJ, Myers JR, Gupta S, Weng LC, Ashton JM, Cornish TC, Pandey A, Halushka MK (2015) MiRge-a multiplexed method of processing small RNA-Seq data to determine MicroRNAentropy. PloS ONE 10:e0143066. doi: 10.1371/journal.pone.0143066 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bonnet E, He Y, Billiau K, Vande PY (2010) TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics 26:1566–1568. doi: 10.1093/bioinformatics/btq233 PubMedCrossRefGoogle Scholar
  9. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291. doi: 10.1016/j.cell.2005.11.035 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bottino MC, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PCG (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS ONE 8:e59423. doi: 10.1371/journal.pone.0059423 CrossRefGoogle Scholar
  11. Budak H, Khan Z, Kantar M (2014) History and current status of wheat miRNAs using next-generation sequencing and their roles in development and stress. Brief Funct Genom 14:189–198. doi: 10.1093/bfgp/elu021 CrossRefGoogle Scholar
  12. Chellappan P, Xia J, Zhou X, Gao S, Zhang X, Coutino G, Vazquex F, Zhang W, Jin H (2010) siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res 38:6883–6894. doi: 10.1093/nar/gkq590 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen D, Meng Y, Yuan C, Bai L, Huang D, Lv S, Wu P, Chen LL, Chen M (2011) Plant siRNAs from introns mediate DNA methylation of host genes. RNA 17:1012–1024. doi: 10.1261/rna.2589011 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235:375–386. doi: 10.1007/s00425-011-1514-9 PubMedCrossRefGoogle Scholar
  15. Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L (2014) Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol 56:73–83. doi: 10.1093/pcp/pcu149 PubMedCrossRefGoogle Scholar
  16. Chen L, Heikkinen L, Wang CL, Yang Y, Knott KE, Wong G (2017) miRToolsGallery: a microRNA bioinformatics resources database portal. Available at Accessed 02 July 2017
  17. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139. doi: 10.1016/j.pbi.2008.12.006 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chinnusamy V, Zhu J, Zhou T, Zhu JK (2007) Small RNAs: big role in abiotic stress tolerance of plants. In: Jenks MA, Hasegawa PM, Jain SM (eds) Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Springer, the Netherlands, pp 223–260. doi: 10.1007/978-1-4020-5578-2 CrossRefGoogle Scholar
  19. Ci D, Song Y, Tian M, Zhang D (2015) Methylation of miRNA genes in the response to temperature stress in Populus simonii. Front Plant Sci 6:921. doi: 10.3389/fpls.2015.00921 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Creasey KM, Zhai J, Borges F, Van Ex F, Regulski M, Meyers BC, Martienssen RA (2014) miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis. Nature 508:411–415. doi: 10.1038/nature13069 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Crisp PA, Ganguly D, Eichten SR et al (2016) Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv 2:e1501340. doi: 10.1126/sciadv.1501340 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442. doi: 10.1105/tpc.110.082784 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dai L-F, Ya-Ling C, Xiang-Dong L, Xiu-Fang W, Feng-Lei C, Fan-Tao Z, Yi Z, Jian-Kun X (2015) Level and pattern of DNA methylation changes in rice cold tolerance introgression lines derived from Oryza rufipogon Griff. Euphytica 205:73–83. doi: 10.1007/s10681-015-1389-0 CrossRefGoogle Scholar
  24. Dar SA, Thakur A, Qureshi A, Kumar M (2016) siRNAmod: A database of experimentally validated chemically modified siRNAs. Sci Rep 6:20031. doi: 10.1038/srep20031 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Deng P, Wang L, Cui L, Feng K, Liu F, Du X (2015) Global identification of microRNAs and their targets in barley under salinity stress. PLoS One 10:e0137990. doi: 10.1371/journal.pone.0137990 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Ding Y, Avramova Z, Fromm M (2011) The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J 66(735–744):66. doi: 10.1111/j.1365-313X.2011.04534.x Google Scholar
  27. Dolata J, Bajczyk M, Bielewicz D, Niedojadlo K, Niedojadlo J, Pietrykowska H, Walczak W, Szweykowska-Kulinska Z, Jarmolowski A (2016) Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels. Plant Physiol 172:297–312. doi: 10.1104/pp.16.00830 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dukowic-Schulze S, Sundararajan A, Ramaraj T, Kianian S, Pawlowski WP, Mudge J, Chen C (2016) Novel meiotic miRNAs and indications for a role of phasiRNAs in meiosis. Front Plant Sci 7:762. doi: 10.3389/fpls.2016.00762 PubMedPubMedCentralCrossRefGoogle Scholar
  29. El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, Vega D, Hakimi MA, Jacobsen SE, Cooke R, Lagrange T (2007) Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE binding platforms in RNAi-related components. Genes Dev 21:2539–2544. doi: 10.1101/gad.451207 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fahlgren, N, Hill ST, Carrington JC, Carbonell A (2016) P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design. Bioinformatics 32, pp. 157–158, doi: 10.1093/bioinformatics/btv534 PubMedGoogle Scholar
  31. Fazzari MJ, Greally JM (2004) Epigenomics: beyond CpG islands. Nat Rev Genet 5:446–455. doi: 10.1038/nrg1349 PubMedCrossRefGoogle Scholar
  32. Forestan C, Cigliano RA, Farinati S, Lunardon A, Sanseverino W, Varotto S (2016) Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Sci Rep 6:30446. doi: 10.1038/srep30446 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fortes AM, Gallusci P (2017) Plant stress responses and phenotypic plasticity in the epigenomics era: perspectives on the grapevine scenario, a model for perennial crop plants. Front Plant Sci 8:82. doi: 10.3389/fpls.2017.00082 PubMedPubMedCentralGoogle Scholar
  34. Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165. doi: 10.1007/s12033-011-9387-5 PubMedCrossRefGoogle Scholar
  35. Fu R, Zhang M, Zhao Y, He X, Ding C, Wang S, Feng Y, Song X, Li P, Wang B (2017) Identification of salt tolerance-related microRNAs and their targets in Maize (Zea mays L.) using high-throughput sequencing and degradome analysis. Front Plant Sci 8:864. doi: 10.3389/fpls.2017.00864 Google Scholar
  36. Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231:991–1001. doi: 10.1007/s00425-010-1104-2 PubMedCrossRefGoogle Scholar
  37. Gallusci P, Hodgman C, Teyssier E, Seymour GB (2016) DNA methylation and chromatin regulation during fleshy fruit development and ripening. Front Plant Sci 7:807. doi: 10.3389/fpls.2016.00807 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gallusci P, Dai Z, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Vile D, Brunel Muguet S (2017) Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci 22:610–623. doi: 10.1016/j.tplants.2017.04.009 PubMedCrossRefGoogle Scholar
  39. Ganie SA, Dey N, Mondal TK (2016) Promoter methylation regulates the abundance of osa-miR393a in contrasting rice genotypes under salinity stress. Funct Integr Genomics 16(1):1–11. doi: 10.1007/s10142-015-0460-1 PubMedCrossRefGoogle Scholar
  40. Garg R, Chevala NV, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5:14922. doi: 10.1038/srep14922 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M (2015) MicroRNAs and drought responses in sugarcane. Front Plant Sci 6:58. doi: 10.3389/fpls.2015.00058 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gharat SA, Shaw BP (2015) Novel and conserved miRNAs in the halophyte Suaeda maritima identified by deep sequencing and computational predictions using the ESTs of two mangrove plants. BMC Plant Biol 15:301. doi: 10.1186/s12870-015-0682-3 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787. doi: 10.3389/fpls.2016.01787 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Joshi R, Wani SH, Singh B, Bohra A, Dar Z, Lon AA, Pareek A, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029. doi: 10.3389/fpls.2016.01029 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Khaksefidi ER, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E (2015) Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus. Front Plant Sci 6:741. doi: 10.3389/fpls.2015.00741 Google Scholar
  46. Khan Y, Yadav A, Bonthala VS, Muthamilarasan M, Yadav CB, Prasad M (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet (Setaria italica L.) miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tiss Organ Cult 118:279–292. doi: 10.1007/s11240-014-0480-x CrossRefGoogle Scholar
  47. Khare T, Kumar V, Kavi Kishor PB (2015) Na+ and Cl ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252:1149–1165. doi: 10.1007/s00709-014-0749-2 PubMedCrossRefGoogle Scholar
  48. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122. doi: 10.1016/j.cell.2009.12.023 PubMedCrossRefGoogle Scholar
  49. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148. doi: 10.1016/j.bbagrm.2011.05.001 PubMedCrossRefGoogle Scholar
  50. Kinoshita T, Seki M (2014) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol 55:1859–1863. doi: 10.1093/pcp/pcu125 PubMedCrossRefGoogle Scholar
  51. Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH (2012) IAA-Ala resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24:3590–3602. doi: 10.1105/tpc.112.097006 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kong YM, Elling AA, Chen B, Deng XW (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Am J Plant Sci 1:69–76. doi: 10.4236/ajps.2010.12009 CrossRefGoogle Scholar
  53. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. doi: 10.1093/nar/gkt1181 PubMedCrossRefGoogle Scholar
  54. Kumar V, Khare T (2015) Individual and additive effects of Na+ and Cl ions on rice under salinity stress. Arch Agron Soil Sci 61:381–395. doi: 10.1080/03650340.2014.936400 CrossRefGoogle Scholar
  55. Kumar V, Khare T (2016) Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual (Na+ and Cl) and additive stress effects of NaCl. Acta Physiol Plant 38:170. doi: 10.1007/s11738-016-2191-x CrossRefGoogle Scholar
  56. Kumar S, Singh A (2016) Epigenetic regulation of abiotic stress tolerance in plants. Adv Plants Agric Res 5:00179. doi: 10.15406/apar.2016.05.00179 Google Scholar
  57. Kumar V, Khare T, Sharma M, Wani SH (2017) ROS induced signaling and gene-expression in crops under salinity stress. In: Khan IR (ed) Reactive oxygen species and antioxidant systems: role and regulation under abiotic stress. Springer Nature, Singapore. doi: 10.1007/978-981-10-5254-5_7 Google Scholar
  58. Li T, Li H, Zhang YX, Liu JY (2011) Identification and analysis of seven H2O2- responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res 39:2821–2833. doi: 10.1093/nar/gkq1047 PubMedCrossRefGoogle Scholar
  59. Li B, Duan H, Li J, Deng XW, Yin W, Xia X (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539. doi: 10.1007/s11103-013-0010-y PubMedCrossRefGoogle Scholar
  60. Li H, Yan S, Zhao L, Tan J, Zhang Q, Gao F, Wang P, Hou H, Li L (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize roots welling. BMC Plant Biol 14:105. doi: 10.1186/1471-2229-14-105 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li Y, Li C, Bai L, He C, Yu X (2016) MicroRNA and target gene responses to salt stress in grafted cucumber seedlings. Acta Physiol Plant 38:42. doi: 10.1007/s11738-016-2070-5 CrossRefGoogle Scholar
  62. Lindgreen S, Gardner PP, Krogh A (2007) MASTR: multiple alignment and structure prediction of non-coding RNAs using simulated annealing. Bioinformatics 23:3304–3311. doi: 10.1093/bioinformatics/btm525 PubMedCrossRefGoogle Scholar
  63. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843. doi: 10.1261/rna.895308 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Long RC, Li MN, Kang JM, Zhang TJ, Sun Y, Yang QC (2015) Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Physiol Plant 154:13–27. doi: 10.1111/ppl.12266 PubMedCrossRefGoogle Scholar
  65. Lotfi A, Pervaiz T, Jiu S, Faghihi F, Jahanbakhshian Z, Khorzoghi EG, Fang J (2017) Role of microRNAs and their target genes in salinity response in plants. Plant Growth Regul 82:377–390. doi: 10.1007/s10725-017-0277-0 CrossRefGoogle Scholar
  66. Lu W, Li J, Liu F, Gu J, Guo C, Xu L, Zhang H, Xiao K (2011) Expression pattern of wheat miRNAs under salinity stress and prediction of salt-inducible miRNAs targets. Front Agric China 5:413–422. doi: 10.1007/s11703-011-1133-z CrossRefGoogle Scholar
  67. Luan M, Xu M, Lu Y, Zhang L, Fan Y, Wang L (2015) Expression of zma-miR169 miRNAs and their target ZmNF-YA genes in response to abiotic stress in maize leaves. Gene 555:178–185. doi: 10.1016/j.gene.2014.11.001 PubMedCrossRefGoogle Scholar
  68. Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84:169–187. doi: 10.1111/tpj.12999 PubMedCrossRefGoogle Scholar
  69. Macovei A, Tuteja N (2012) microRNAs targeting DEADbox helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 12:183. doi: 10.1186/1471-2229-12-183 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Matsui A, Mizunashi K, Tanaka M, Kaminuma E, Nguyen AH, Nakajima M, Kim JM, Nguyen DV, Toyoda T, Seki M (2014) tasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress. Biomed Res Int. doi: 10.1155/2014/303451 Google Scholar
  71. Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408. doi: 10.1038/nrg3683 PubMedCrossRefGoogle Scholar
  72. Pan JW, Tao JJ, Cheng TC, Bian XH, Wei W, Zhang WK, Ma B, Chen SY, Zhang JS (2016) Soybean miR172a improves salt tolerance and can function as a long-distance signal. Mol Plant 9:1337–1340. doi: 10.1016/j.molp.2016.05.010 PubMedCrossRefGoogle Scholar
  73. Pathak MR, Wani SH (2015) Salinity stress tolerance in relation to polyamine metabolism in plants. Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press, Boca Raton, pp 241–250CrossRefGoogle Scholar
  74. Pathak MR, Teixeira da Silva JA, Wani SH (2014) Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops 5:1–10. doi: 10.4161/gmcr.28774 CrossRefGoogle Scholar
  75. Patra D, Fasold M, Langenberger D, Steger G, Grosse I, Stadler PF (2014) plantDARIO: web based quantitative and qualitative analysis of small RNA-seq data in plants. Front Plant Sci 5:708. doi: 10.3389/fpls.2014.00708 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pikaard CS, Scheid OM (2015) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 6:a019315. doi: 10.1101/cshperspect.a019315 CrossRefGoogle Scholar
  77. Rajewsky N, Jurga S, Barciszewski J (eds) (2017) RNA technologies: plant epigenetics. Springer, Berlin. doi: 10.1007/978-3-319-55520-1 Google Scholar
  78. RNAcentral Consortium (2017) RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Res 45:D128–D134. doi: 10.1093/nar/gkw1008 CrossRefGoogle Scholar
  79. Ronemus M, Vaughn MW, Martienssen RA (2006) MicroRNA-targeted and small interfering RNA–mediated mRNA degradation is regulated by Argonaute, Dicer, and RNA-dependent RNA polymerase in Arabidopsis. The Plant Cell 18:1559–1574. doi: 10.1105/tpc.106.042127 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Rosewick N, Durkin K, Momont M, Takeda H, Caiment F, Cleuter Y, Vernin C, Mortrex F, Wattel E, Burny A, Georges M, Van den Broeke A (2013) ST105 Deep sequencing reveals abundant Pol III retroviral microRNA cluster in Bovine Leukemia Virus-induced leukemia. J Acq Imm Def Syndr 62:66. doi: 10.1097/01.qai.0000429267.82844.b6 CrossRefGoogle Scholar
  81. Rueda A, Barturen G, Lebrón R, Gómez-Martín C, Alganza Á, Oliver JL, Hackenberg M (2015) sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res 43:W467–W473. doi: 10.1093/nar/gkv555 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159. doi: 10.1007/s00299-013-1462-x PubMedCrossRefGoogle Scholar
  83. Schraivogel D, Meister G (2014) Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins. Trends Biochem Sci 39:420–431. doi: 10.1016/j.tibs.2014.07.004 PubMedCrossRefGoogle Scholar
  84. Shriram V, Kumar V, Devarumath RM, Khare T, Wani SH (2016) MicroRNAs as potent targets for abiotic stress tolerance in plants. Front Plant Sci 7:817. doi: 10.3389/fpls.2016.00817 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Song JB, Gao S, Wang Y, Li BW, Zhang YL, Yang ZM (2016) miR394 and its target Gene LCR are involved in cold stress response in Arabidopsis. Plant Gene 5:56–64. doi: 10.1016/j.plgene.2015.12.001 CrossRefGoogle Scholar
  86. Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V (2012) The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics 28:2059–2061. doi: 10.1093/bioinformatics/bts311 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sun GL, Stewart CN, Xiao P, Zhang BH (2012) MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One 7(3):e32017. doi: 10.1371/journal.pone.0032017 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sun X, Dong B, Yin L, Zhang R, Du W, Liu D, Shi N, Li A, Liang Y, Mao L (2013) PMTED: a plant microRNA target expression database. BMC Bioinformatics 14:174. doi: 10.1186/1471-2105-14-174 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, Gong Y, Wang R, Limera C, Zhang K, Liu L (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genom 16:197. doi: 10.1186/s12864-015-1416-5 CrossRefGoogle Scholar
  90. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16:2001–2019. doi: 10.1105/tpc.104.022830 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203. doi: 10.1016/j.tplants.2012.01.010 PubMedCrossRefGoogle Scholar
  92. Surekha C, Aruna L, Hossain MA, Wani SH, Neelapu NRR (2015) Present status and future prospects of transgenic approaches for salt tolerance in plants/crop plants. Managing Salt Tolerance in Plants: Molecular and Genomic Perspectives. CRC Press, Boca Raton, p 329Google Scholar
  93. Swiezewski S, Crevillen P, Liu F, Ecker JR, Jerzmanowski A, Dean C (2007) Small RNA-mediated chromatin silencing directed to the 30 region of the Arabidopsis gene encoding the developmental regulator, FLC. Proc Natl Acad Sci USA 104:3633–3638. doi: 10.1073/pnas.0611459104 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Taguchi YH (2013) MicroRNA-mediated regulation of target genes in several brain regions is correlated to both microRNA-targeting-specific promoter methylation and differential microRNA expression. BioData Min 6:11. doi: 10.1186/1756-0381-6-11 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Teotia S, Singh D, Tang G (2017) DNA Methylation in Plants by microRNAs. In: Rajewsky N, Jurga S, Barciszewski J (eds) Plant Epigenetics. RNA Technologies. Springer, Cham, pp 247–262. doi: 10.1007/978-3-319-55520-1_13 CrossRefGoogle Scholar
  96. Tripathi A, Goswami K, Sanan-Mishra N (2015) Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution. Front Physiol 6:286. doi: 10.3389/fphys.2015.00286 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP et al (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818. doi: 10.1111/j.1469-8137.2010.03320.x PubMedCrossRefGoogle Scholar
  98. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687. doi: 10.1016/j.cell.2009.01.046 PubMedCrossRefGoogle Scholar
  99. Wang HL, Chekanova JA (2016) Small RNAs: essential regulators of gene expression and defenses against environmental stresses in plants. WIRE RNA. 7:356–381. doi: 10.1002/wrna.1340 CrossRefGoogle Scholar
  100. Wani SH, Gosal SS (2010) Genetic engineering for osmotic stress tolerance in plants–role of proline. IUP J Genet Evol 3(4):14–25Google Scholar
  101. Wani SH, Hossain MA (eds) (2015) Managing salinity tolerance in plants: molecular and genomic perspectives. CRC Press, Boca RatonGoogle Scholar
  102. Wani SH, Singh NB, Devi TR, Haribhushan A, Jeberson SM (2013a) Engineering Abiotic Stress Tolerance in Plants: Extricating Regulatory Gene Complex. In: Malik CP, Sanghera GS, Wani SH (eds) Conventional and non conventional approaches for Crop Improvement. MD Publications, New Delhi, pp 1–21Google Scholar
  103. Wani SH, Singh NB, Haribhushan A, Mir JI (2013b) Compatible solute engineering in plants for abiotic stress tolerance—role of glycine betaine. Curr Genom 14:157–165. doi: 10.2174/1389202911314030001 CrossRefGoogle Scholar
  104. Wu L, Mao L, Qi Y (2012) Roles of dicer-like and argonaute proteins in TAS-derived small interfering RNA-triggered DNA methylation. Plant Physiol 160:990–999. doi: 10.1104/pp.112.200279 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Xie F, Wang Q, Sun R, Zhang B (2015) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804. doi: 10.1093/jxb/eru437 PubMedCrossRefGoogle Scholar
  106. Yang ZM, Chen J (2013) A potential role of microRNAs in regulating plant response to metal toxicity. Metallomics 5:1184–1190. doi: 10.1039/c3mt00022b PubMedCrossRefGoogle Scholar
  107. Yao Y, Ni Z, Peng H, Sun F, Xin M, Sunkar R, Zhu JK, Sun Q (2010) Non-coding small RNAs responsive to abiotic stress in wheat (Triticum aestivum L.). Funct Integr Genom 10:187–190. doi: 10.1007/s10142-010-0163-6 CrossRefGoogle Scholar
  108. Yao Y, Bilichak A, Golubov A, Kovalchuk I (2012) Ddm1 plants are sensitive to methyl methane sulfonate and NaCl stresses and are deficient in DNA repair. Plant Cell Rep 31:1549–1561. doi: 10.1007/s00299-012-1269-1 PubMedCrossRefGoogle Scholar
  109. Yi Xin, Zhang Zhenhai, Ling Yi, Wenying Xu, Zhen S (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989. doi: 10.1093/nar/gku1162 PubMedCrossRefGoogle Scholar
  110. Yu Y, Wu G, Yuan H, Cheng L, Zhao D, Huang W, Zhang S, Zhang L, Chen H, Zhang J, Guan F (2016) Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. BMC Plant Biol 16:124. doi: 10.1186/s12870-016-0808-2 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Yuan S, Li Z, Li D, Yuan N, Hu Q, Luo H (2015) Constitutive expression of rice microRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass. Plant Physiol 169:576–593. doi: 10.1104/pp.15.00899 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zandkarimi H, Bedre R, Solis J, Mangu V, Baisakh N (2015) Sequencing and expression analysis of salt responsive miRNAs and target genes in the halophyte smooth cordgrass (Spartina alternifolia Loisel). Mol Biol Rep 42:1341–1350. doi: 10.1007/s11033-015-3880-z PubMedCrossRefGoogle Scholar
  113. Zhai J, Zhang H, Arikit S, Huang K, Nan GL, Walbot V, Meyers BC (2015) Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc Natl Acad Sci USA 112:3146–3151. doi: 10.1073/pnas.1418918112 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66:1749–1761. doi: 10.1093/jxb/erv013 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zhang B, Wang Q (2016) MicroRNA, a new target for engineering new crop cultivars. Bioengineered 7:7–10. doi: 10.1080/21655979.2016.1141838 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Zhang H, Zhu JK (2011) RNA-directed DNA methylation. Curr Opin Plant Biol 14:142–147. doi: 10.1016/j.pbi.2011.02.003 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zhang C, Li G, Zhu S, Zhang S, Fang J (2014) tasiRNAdb: a database of ta-siRNA regulatory pathways. Bioinformatics 30:1045–1046. doi: 10.1093/bioinformatics/btt746 PubMedCrossRefGoogle Scholar
  118. Zhao Y, Li H, Fang S, Kang Y, Hao Y et al (2016) NONCODE 2016: an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44:D203–D208. doi: 10.1093/nar/gkv1252 PubMedCrossRefGoogle Scholar
  119. Zheng Q, Rowley MJ, Bohmdorfer G, Sandhu D, Gregory BD, Wierzbicki AT (2013) RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes. Plant J 73:179–189. doi: 10.1111/tpj.12034 PubMedCrossRefGoogle Scholar
  120. Zhou M, Luo H (2013) MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol Biol 83:59–75. doi: 10.1007/s11103-013-0089-1 PubMedCrossRefGoogle Scholar
  121. Zhou M, Li DY, Li ZG, Hu Q, Yang CH, Zhu LH et al (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391. doi: 10.1104/pp.112.208702 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhuang Y, Zhou XH, Liu J (2014) Conserved miRNAs and their response to salt stress in wild eggplant Solanum linnaeanum roots. Int J Mol Sci 15:839–849. doi: 10.3390/ijms15010839 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyModern College of Arts, Science and Commerce (Savitribai Phule Pune University)PuneIndia
  2. 2.Department of Environmental ScienceSavitribai Phule Pune UniversityPuneIndia
  3. 3.Department of BotanyProf. Ramkrishna More College (Savitribai Phule Pune University)PuneIndia
  4. 4.Mountain Research Centre for Field CropsSher-e-Kashmir University of Agricultural Sciences and Technology of KashmirAnantnagIndia
  5. 5.Department of Plant Soil and Microbial SciencesMichigan State UniversityEast LansingUSA

Personalised recommendations