Plant Cell Reports

, Volume 36, Issue 10, pp 1655–1666 | Cite as

Wax Crystal-Sparse Leaf 4, encoding a β-ketoacyl-coenzyme A synthase 6, is involved in rice cuticular wax accumulation

  • Lu Gan
  • Shanshan Zhu
  • Zhichao Zhao
  • Linglong Liu
  • Xiaole Wang
  • Zhe Zhang
  • Xin Zhang
  • Jie Wang
  • Jiulin Wang
  • Xiuping Guo
  • Jianmin WanEmail author
Original Article


Key message

WSL4 encodes a KCS6 protein which is required for cuticular wax accumulation in rice.


Very long chain fatty acids (VLCFAs) are essential precursors for cuticular wax biosynthesis. VLCFA biosynthesis occurs in the endoplasmic reticulum and requires the fatty acid elongase (FAE) complex. The β-ketoacyl-coenzyme A synthase (KCS) catalyzes the first step of FAE-mediated VLCFA elongation. Here we characterized the Wax Crystal-Sparse Leaf 4 (WSL4) gene involved in leaf cuticular wax accumulation in rice. The wsl4 mutant displayed a pleiotropic phenotype including dwarfism, less tiller numbers and reduced surface wax load. Map-based cloning and nucleotide sequencing results revealed that wsl4 carried a single nucleotide substitution in the second exon of a putative KCS6 gene, encoding one subunit of the FAE complex for VLCFAs. Genetic complementation confirmed that the mutation in WSL4 was responsible for the phenotype of wsl4. WSL4 was constitutively expressed in various rice tissues and localized in the endoplasmic reticulum. Both WSL4-RNAi transgenic lines and WSL4 knocked-out mutants exhibited wax-deficient phenotypes similar to the wsl4 mutant. These data indicate that WSL4 is required for cuticular wax accumulation in rice.


Rice (Oryza sativaCuticular wax Wax Crystal-Sparse Leaf 4 β-Ketoacyl-coenzyme A synthase 6 Fatty acid elongase 





Coenzyme A


Enoyl-CoA reductase


Endoplasmic reticulum


Fatty acid elongation


Gas chromatography–mass spectrometry


Green fluorescent protein




β-Hydroxyacyl-Coa dehydratase


β-Ketoacyl-CoA reductase


β-Ketoacyl-CoA synthase


RNA interference


Scanning electron microscope


Transmission electron microscopy


Open reading frame


Quantitative RT-PCR




Very long chain fatty acids


Wax Crystal-Sparse Leaf



This work was supported by the National Key R&D Program of China (2016YFD0100600, 2016YFD0200700), and the National Special Project of China (2014ZX08001-006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

299_2017_2181_MOESM1_ESM.pdf (242 kb)
Supplementary Figure 1. SEM analysis of epicuticular wax crystal patterns on the leaf sheaths of WT (A, B, C) and wsl4 (D, E, F), Bar=1μm. (PDF 241 kb)
299_2017_2181_MOESM2_ESM.xlsx (12 kb)
Supplementary Table 1. Primers used in this paper. (XLSX 11 kb)


  1. Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480CrossRefPubMedPubMedCentralGoogle Scholar
  2. Batoko H, Zheng HQ, Hawes C, Moore I (2000) A rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell 12:2201–2218CrossRefPubMedPubMedCentralGoogle Scholar
  3. Buschhaus C, Jetter R (2012) Composition and physiological function of the wax layers coating Arabidopsis leaves: β-amyrin negatively affects the intracuticular water barrier. Plant Physiol 160:1120–1129CrossRefPubMedPubMedCentralGoogle Scholar
  4. Espana L, Heredia-Guerrero JA, Reina-Pinto JJ, Fernandez-Munoz R, Heredia A, Dominguez E (2014) Transient silencing of CHALCONE SYNTHASE during fruit ripening modifies tomato epidermal cells and cuticle properties. Plant Physiol 166:1371–1386CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008CrossRefPubMedPubMedCentralGoogle Scholar
  6. Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant Sci 210:93–107CrossRefPubMedGoogle Scholar
  7. Haslam TM, Manas-Fernandez A, Zhao L, Kunst L (2012) Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol 160:1164–1174CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834CrossRefPubMedGoogle Scholar
  9. Hooker TS, Millar AA, Kunst L (2002) Significance of the expression of the CER6 condensing enzyme for cuticular wax production in Arabidopsis. Plant Physiol 129:1568–1580CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ito Y, Kimura F, Hirakata K, Tsuda K, Takasugi T, Eiguchi M, Nakagawa K, Kurata N (2011) Fatty acid elongase is required for shoot development in rice. Plant J 66:680–688CrossRefPubMedGoogle Scholar
  11. James DW Jr, Lim E, Keller J, Plooy L, Ralston E, Dooner HK (1995) Directed tagging of the Arabidopsis FATTY ACID ELONGATIONl (FAEl) gene with the maize transposon activator. Plant Cell 7:309–319CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405CrossRefGoogle Scholar
  13. Jetter R, Schaffer S (2001) Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol 126:1725–1737CrossRefPubMedPubMedCentralGoogle Scholar
  14. Joubès J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67:547–566CrossRefPubMedGoogle Scholar
  15. Kannangara R, Branigan C, Liu Y, Penfield T, Rao V, Mouille G, Hofte H, Pauly M, Riechmann JL, Broun P (2007) The transcription factor WIN1/SHN1 regulates Cutin biosynthesis in Arabidopsis thaliana. Plant Cell 19:1278–1294CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC (2013) Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162:567–580CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727CrossRefPubMedGoogle Scholar
  18. Lee SB, Suh MC (2013) Recent advances in cuticular wax biosynthesis and its regulation in Arabidopsis. Mol Plant 6:246–249CrossRefPubMedGoogle Scholar
  19. Lee S, Jung S, Go Y, Kim H, Kim J, Cho H, Park OK, Suh M (2009) Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J 60:462–475CrossRefPubMedGoogle Scholar
  20. Leide J, Hildebrandt U, Reussing K, Riederer M, Vogg G (2007) The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a beta-ketoacyl-coenzyme A synthase (LeCER6). Plant Physiol 144:1667–1679CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, Schreiber L, Franke R, Zhang P, Chen L, Gao Y, Liang W, Zhang D (2010) Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190CrossRefPubMedPubMedCentralGoogle Scholar
  22. Li H, Jiang L, Youn JH, Sun W, Cheng Z, Jin T, Ma X, Guo X, Wang J, Zhang X, Wu F, Wu C, Kim SK, Wan J (2013) A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). New Phytol 200:1076–1088CrossRefPubMedGoogle Scholar
  23. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e161CrossRefGoogle Scholar
  24. Lolle SJ, Berlyn GP, Engstrom EM, Krolikowski KA, Reiter WD, Pruitt RE (1997) Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle. Dev Biol 189:311–321CrossRefPubMedGoogle Scholar
  25. Mao B, Cheng Z, Lei C, Xu F, Gao S, Ren Y, Wang J, Zhang X, Wang J, Wu F, Guo X, Liu X, Wu C, Wang H, Wan J (2012) Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235:39–52CrossRefPubMedGoogle Scholar
  26. Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838CrossRefPubMedPubMedCentralGoogle Scholar
  27. Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, Dunn TM (2006) Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem 281:9018–9029CrossRefPubMedGoogle Scholar
  28. Qin YM, Pujol FM, Hu CY, Feng JX, Kastaniotis AJ, Hiltunen JK, Zhu YX (2007) Genetic and biochemical studies in yeast reveal that the cotton fibre-specific GhCER6 gene functions in fatty acid elongation. J Exp Bot 58:473–481CrossRefPubMedGoogle Scholar
  29. Qin B, Tang D, Huang J, Li M, Wu X, Lu L, Wang K, Yu H, Chen J, Gu M, Cheng Z (2011) Rice OsGL1-1 is involved in leaf cuticular wax and cuticle membrane. Mol Plant 4(6):985–995CrossRefPubMedGoogle Scholar
  30. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2^(−delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 3:71–85Google Scholar
  31. Samuels L, Kunst L, Jetter R (2008) Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol 59:683–707CrossRefPubMedGoogle Scholar
  32. Serra O, Soler M, Hohn C, Franke R, Schreiber L, Prat S, Molinas M, Figueras AM (2009) Silencing of StKCS6 in potato periderm leads to reduced chain lengths of suberin and wax compounds and increased peridermal transpiration. J Exp Bot 2:697–707CrossRefGoogle Scholar
  33. Shepherd T, Wynne Griffiths D (2006) The effects of stress on plant cuticular waxes. New Phytol 171:469–499CrossRefPubMedGoogle Scholar
  34. Sieber P, Schorderet M, Ryser U, Buchala A, Kolattukudy P, Metraux JP, Nawrath C (2000) Transgenic Arabidopsis plants expressing a fungal cutinase show alterations in the structure and properties of the cuticle and postgenital organ fusions. Plant Cell 12:721–738CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489CrossRefPubMedPubMedCentralGoogle Scholar
  36. Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 2:119–130CrossRefGoogle Scholar
  37. Tsuda K, Akiba T, Kimura F, Ishibashi M, Moriya C, Nakagawa K, Kurata N, Ito Y (2013) ONION2 fatty acid elongase is required for shoot development in rice. Plant Cell Physiol 54:209–217CrossRefPubMedGoogle Scholar
  38. Weidenbach D, Jansen M, Franke RB, Hensel G, Weissgerber W, Ulferts S, Jansen I, Schreiber L, Korzun V, Pontzen R, Kumlehn J, Pillen K, Schaffrath U (2014) Evolutionary conserved function of barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in providing wax signals for germination of powdery mildew fungi. Plant Physiol 166:1621–1633CrossRefPubMedPubMedCentralGoogle Scholar
  39. Yeats TH, Rose JKC (2013) The formation and function of plant cuticles. Plant Physiol 163:5–20CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yu D, Ranathunge K, Huang H, Pei Z, Franke R, Schreiber L, He C (2008) Wax Crystal-Sparse Leaf1 encodes a β-ketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta 228(4):675–685CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Lu Gan
    • 1
  • Shanshan Zhu
    • 1
  • Zhichao Zhao
    • 1
  • Linglong Liu
    • 2
  • Xiaole Wang
    • 1
  • Zhe Zhang
    • 1
  • Xin Zhang
    • 1
  • Jie Wang
    • 1
  • Jiulin Wang
    • 1
  • Xiuping Guo
    • 1
  • Jianmin Wan
    • 1
    • 2
    Email author
  1. 1.National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  2. 2.National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjingChina

Personalised recommendations