Advertisement

Plant Cell Reports

, Volume 36, Issue 9, pp 1457–1476 | Cite as

GR1-like gene expression in Lycium chinense was regulated by cadmium-induced endogenous jasmonic acids accumulation

  • Zhigang Ma
  • Ting An
  • Xuerui Zhu
  • Jing JiEmail author
  • Gang Wang
  • Chunfeng Guan
  • Chao Jin
  • Lingling Yi
Original Article

Abstract

Key message

The G1-like gene from the Lycium chinense was cloned and transferred into N. tabacum. Evidence showed that endogenous JA accumulation was crucial to LcGR gene expression in cadmium-stressed L. chinense.

Abstract

Glutathione reductase (GR) plays a vital role in glutathione–ascorbate metabolism and is a key enzyme in maintaining the redox state in plants. Jasmonic acids (JA) are important hormones regulating protective responses against bacteria and mechanic damage in plants. At present, the relationship between the endogenous JA accumulation, the glutathione (GSH) content and GR gene expression in plants under cadmium (Cd) stress has not been elucidated. This study primarily aims to explore their interconnected relations. First, we isolated the GR1-like gene from Lycium chinense (LcGR). Real-time PCR showed that gene LcGR and allene oxide cyclase (LcAOC) (a JA synthesis gene) expression in L. chinense plants was significantly enhanced by CdCl2 and reduced by CdCl2 cotreatment with 12,13-epoxy-octadecenoic acid (EOA), a JA synthesis inhibitor. Meanwhile, the JA content in plants strongly increased under Cd stress and decreased under Cd + EOA treatment, which was in accordance with expression pattern of LcAOC. The function of gene LcGR was confirmed in vitro with E. coli expression system. The subcellular localization in chloroplasts of LcGR gene was proved in Nicotiana tabacum leaves with transient transfection system of Agrobacterium tumefaciens. Furthermore, the overexpression of gene LcGR in the transgenic tabacum led to great Cd-tolerance and higher GSH accumulation. Overall, the results showed that the endogenous JA accumulation in Cd-stressed plants affects the GR expression which is crucial to the GSH accumulation and GSH-dependent tolerance to cadmium in LcGR transformants.

Keywords

Glutathione reductase Lycium chinense Cadmium Jasmonic acids Oxidative stress 

Notes

Acknowledgements

This subject is supported by the National Science and Technology Major Project of China on GMO Cultivation for New Variaties (No. 2014ZX0800302B), National Natural Science Foundation of China (Nos. 31271793 and 31271419), Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCQNJC14700).

Compliance with ethical standards

Conflict of interest

The authors have declared that they have no conflict of interest.

Supplementary material

299_2017_2168_MOESM1_ESM.docx (142 kb)
Supplemented Fig. 1 Transcript level of the WT and the transgenic tabacum plants grown in control condition. Lanes marked WT and 1 - 9 are the semi-quantity PCR products of the WT plants and the LcGR transgenic lines. The PCR products of gene LcGR were on the top of the figure and those of gene NtUbiquitin (Ubi) were at the bottom. The Ubi gene expression was taken as the reference. (DOCX 142 kb)
299_2017_2168_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)
299_2017_2168_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 16 kb)

References

  1. Agrawal GK, Jwa NS, Agrawal SK, Tamogami S, Iwahashi H, Rakwal R (2003) Cloning of novel rice allene oxide cyclase (OsAOC): mRNA expression and comparative analysis with allene oxide synthase (OsAOS) gene provides insight into the transcriptional regulation of octadecanoid pathway biosynthetic genes in rice. Plant Sci 164(6):979–992CrossRefGoogle Scholar
  2. Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A, Karpinski S (2004) Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16(9):2448–2462PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488PubMedCrossRefGoogle Scholar
  4. Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N 2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162(11):1220–1225PubMedCrossRefGoogle Scholar
  5. Bingham FT, Page AL, Mahler RJ, Ganje TJ (1975) Growth and cadmium accumulation of plants grown on a soil treated with a cadmium-enriched sewage sludge. J Environ Qual 4(2):207–211CrossRefGoogle Scholar
  6. Braha B, Tintemann H, Krauss G, Ehrman J, Bärlocher F, Krauss GJ (2007) Stress response in two strains of the aquatic hyphomycete Heliscus lugdunensis after exposure to cadmium and copper ions. Biometals 20(1):93PubMedCrossRefGoogle Scholar
  7. Cabot C, Gallego B, Martos S, Barceló J, Poschenrieder C (2013) Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta 237(1):337–349PubMedCrossRefGoogle Scholar
  8. Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16(5):1143–1162PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen J, Yan Z, Li X (2014) Effect of methyl jasmonate on cadmium uptake and antioxidative capacity in Kandelia obovata seedlings under cadmium stress. Ecotoxicol Environ Saf 104(5):349–356PubMedCrossRefGoogle Scholar
  10. Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877PubMedCrossRefGoogle Scholar
  11. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):27–30CrossRefGoogle Scholar
  12. De Knecht JA, Van Baren N, Ten Bookum WM, Sang HWWF, Koevoets PLM, Schat H, Verkleij JAC (1995) Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Sci 106(1):9–18CrossRefGoogle Scholar
  13. De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98(3):853–858PubMedPubMedCentralCrossRefGoogle Scholar
  14. De Wit M, Spoel SH, Sanchez-Perez Gabino F (2013) Perception of low red: far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J Cell Mol Biol 75(1):90–103CrossRefGoogle Scholar
  15. Ding S, Jiang R, Lu Q, Wen X, Lu C (2016) Glutathione reductase 2 maintains the function of photo- system II in Arabidopsis under excess light. Biochem Biophys Acta 6:665–677Google Scholar
  16. Eltayeb AE, Yamamoto S, Habora MEE, Matsukubo Y, Aono M, Tsujimoto H, Tanaka K (2010) Greater protection against oxidative damages imposed by various environmental stresses in transgenic potato with higher level of reduced glutathione. Breed Sci 60(2):101–109CrossRefGoogle Scholar
  17. Fediuc E, Erdei L (2002) Physiological and biochemical aspects of cadmium toxicity and protective mechanisms induced in Phragmites australis and Typha latifolia. J Plant Physiol 159(3):265–271CrossRefGoogle Scholar
  18. Fernández R, Bertrand A, Reis R, Mourato MP, Martins LL, González A (2013) Growth and physiological responses to cadmium stress of two populations of Dittrichia viscosa (L.) Greuter. J Hazard Mater 244:555–562PubMedCrossRefGoogle Scholar
  19. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  20. Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109(3):1047–1057PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ghanta S, Chattopadhyay S (2011) Glutathione as a signaling molecule-another challenge to pathogens: another challenge to pathogens. Plant Signal Behav 6(6):783–788PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32(6):481–494CrossRefGoogle Scholar
  23. Guan C, Ji J, Jia C, Guan WZ, Li ZD, Wang G (2015) A GSHS-like gene from Lycium chinense may be regulated by cadmium-induced endogenous salicylic acid and overexpression of this gene enhances tolerance to cadmium stress in Arabidopsis. Plant Cell Rep 34(5):871–884PubMedCrossRefGoogle Scholar
  24. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11PubMedCrossRefGoogle Scholar
  25. Hong CY, Chao YY, Yang MY, Cheng SY, Cho SC, Kao CH (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant Soil 320(1–2):103–115CrossRefGoogle Scholar
  26. Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16(3):259–272PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:1–37CrossRefGoogle Scholar
  28. Ismail A, Riemann M, Nick P (2012) The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot 63(5):2127–2139PubMedPubMedCentralCrossRefGoogle Scholar
  29. Jozefczak M, Remans T, Vangronsveld J, Cuypers A (2012) Glutathione is a key player in metal- induced oxidative stress defenses. Int J Mol Sci 13(3):3145–3175PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kataya AR, Reumann S (2010) Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol. Plant Signal Behav 5(2):171–175PubMedPubMedCentralCrossRefGoogle Scholar
  31. Koeduka T, Matsui K, Hasegawa M, Akakabe Y, Kajiwara T (2005) Rice fatty acid alpha-dioxygenase is induced by pathogen attack and heavy metal stress: activation through jasmonate signaling. J Plant Physiol 162(8):912–920PubMedCrossRefGoogle Scholar
  32. Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250(5):1079–1089PubMedCrossRefGoogle Scholar
  33. Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9(6):661–673PubMedCrossRefGoogle Scholar
  34. Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crops Prod 31(1):13–19CrossRefGoogle Scholar
  35. Liu HH, Wang YG, Wang SP, Li HJ, Xin QG (2014) Improved zinc tolerance of tobacco by transgenic expression of an allene oxide synthase gene from hexaploid wheat. Acta Physiol Plant 36(9):2433–2440CrossRefGoogle Scholar
  36. Llugany M, Martin SR, Barceló J, Poschenrieder C (2013) Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress. Plant Cell Rep 32(8):1243–1249PubMedCrossRefGoogle Scholar
  37. Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57(1):187–194CrossRefGoogle Scholar
  38. Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162(12):1338–1346PubMedCrossRefGoogle Scholar
  39. Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2006) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162(12):1338–1346CrossRefGoogle Scholar
  40. Maksymiec W, Wojcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66(3):421–427PubMedCrossRefGoogle Scholar
  41. Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23(6):718–723PubMedCrossRefGoogle Scholar
  42. Marone M, Mozzetti S, De Ritis D, Pierelli L, Scambia G (2001) Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. Biol Proced Online 3(1):19–25PubMedPubMedCentralCrossRefGoogle Scholar
  43. Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cadmium-induced stress on the seed germination and seedling growth of Brassica napus L., and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58(1):47–59CrossRefGoogle Scholar
  44. Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou JP, Noctor G (2010) Arabidopsis glutahione reductase 1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol 153(3):1144–1160PubMedPubMedCentralCrossRefGoogle Scholar
  45. Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22(4):368–374PubMedCrossRefGoogle Scholar
  46. Navaza AP, Montes-Bayón M, LeDuc DL, Terry N, Sanz-Medel A (2006) Study of phytochelatins and other related thiols as complexing biomolecules of As and Cd in wild type and genetically modified Brassica juncea plants. J Mass Spectrom 41:323–331PubMedCrossRefGoogle Scholar
  47. Nouairi I, Ammar WB, Youssef N, Miled DDB, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31(2):237–247CrossRefGoogle Scholar
  48. Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110(4):455–460CrossRefGoogle Scholar
  49. Poage M, Le Martret B, Jansen MAK, Nugent GD, Dix PJ (2011) Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation. Plant Mol Biol 76(3–5):371–384PubMedCrossRefGoogle Scholar
  50. Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Anal Biochem 363(1):58–69PubMedCrossRefGoogle Scholar
  51. Radhakrishnan R, Lee IJ (2012) Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean. J Plant Growth Regul 32(1):22–30CrossRefGoogle Scholar
  52. Rodríguezserrano M, Romeropuertas MC, Pazmiño DM, Pazmino DM, Testillano PS, Risueño MC, Luis A, Sandalio LM (2009) Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol 150(1):229–243CrossRefGoogle Scholar
  53. Rodríguez-serrano M, Romero-puertas MC, Zabalza ANA, Corpas FJ, Gómez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29(8):1532–1544PubMedCrossRefGoogle Scholar
  54. Shan C, Liang Z (2010) Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress. Plant Sci 178(2):130–139CrossRefGoogle Scholar
  55. Singh RP, Agrawal M (2010) Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: metal uptake by plant. Ecol Eng 36(7):969–972CrossRefGoogle Scholar
  56. Singh I, Shah K (2014) Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochemistry 108:57–66PubMedCrossRefGoogle Scholar
  57. Stritsis C, Claassen N (2013) Cadmium uptake kinetics and plants factors of shoot Cd concentration. Plant Soil 367(1–2):591–603CrossRefGoogle Scholar
  58. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729PubMedPubMedCentralCrossRefGoogle Scholar
  59. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27(3):502–522PubMedCrossRefGoogle Scholar
  60. Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275(40):31451–31459PubMedCrossRefGoogle Scholar
  61. Wang G, Du X, Ji J, Guan CF, Li ZD, Josine TL (2015) De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Gene 555(2):458–463PubMedCrossRefGoogle Scholar
  62. Wu G, Wang G, Ji J, Gao H, Guan W, Wu J, Wang Y (2014) Cloning of a cytosolic ascorbate peroxidase gene from Lycium chinense Mill. and enhanced salt tolerance by overexpressing in tobacco. Gene 543(1):85–92PubMedCrossRefGoogle Scholar
  63. Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10(9):1539–1550PubMedPubMedCentralCrossRefGoogle Scholar
  64. Xu J, Zhu Y, Ge Q, Li Y, Sun J, Zhang Y, Liu X (2012) Comparative physiological responses of Solanum nigrum and Solanum torvum to cadmium stress. New Phytol 196(1):125–138PubMedCrossRefGoogle Scholar
  65. Yannarelli GG, Fernández-Alvarez AJ, Santa-Cruz DM, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68(4):505–512PubMedCrossRefGoogle Scholar
  66. Yong HC, Chang HS, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129(2):661–677CrossRefGoogle Scholar
  67. Zaman T, Asaeda T (2014) Assessment of macro-micro element accumulation capabilities of Elodea nuttallii under gradient redox statuses with elevated NH4-N concentrations. Acta Bot Croat 73(1):131–147Google Scholar
  68. Ziegler J, Hamberg M, Miersch O, Parthier B (1997) Purification and characterization of allene oxide cyclase from dry corn seeds. Plant Physiol 114(2):565–573PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Wasternack C (2000) Molecular cloning of allene oxide cyclase the enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275(25):19132–19138PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Zhigang Ma
    • 1
    • 3
  • Ting An
    • 2
  • Xuerui Zhu
    • 2
  • Jing Ji
    • 2
    Email author
  • Gang Wang
    • 2
  • Chunfeng Guan
    • 2
  • Chao Jin
    • 2
  • Lingling Yi
    • 4
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of Environmental Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  3. 3.Bengbu Medical CollegeBengbuPeople’s Republic of China
  4. 4.Bengbu No. 2 High SchoolBengbuPeople’s Republic of China

Personalised recommendations