Plant Cell Reports

, Volume 36, Issue 8, pp 1311–1322 | Cite as

5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum tuberosum) at the whole plant level

  • Dimitrij Tyč
  • Eva Nocarová
  • Lenka Sikorová
  • Lukáš FischerEmail author
Original Article


Key message

Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level.


Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 μM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.


5-Azacytidine De novo regeneration Methylation Reactivation TGS Transgene silencing 





Green fluorescent protein


Neomycin phosphotransferase


(Post)transcriptional gene silencing



We thank Filip Vomáčka for English correction. This work was supported by the project LO1417 of the Ministry of Education, Youth and Sports of the Czech Republic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2017_2155_MOESM1_ESM.docx (17 kb)
Online Resource 1 List of primers used for methylation and qRT PCR analysis. (DOCX 16 kb)
299_2017_2155_MOESM2_ESM.tif (1.7 mb)
Online Resource 2 Reactivation of GFP in potato calli after the AzaC treatment. Leaf segments (including petioles) from in vitro grown potato lines R17 and R28 with the silenced expression of GFP and nptII genes were cultured for 3 days on a callus-inducing medium and then for 4 days on the same medium with or without 10 μM AzaC. Thereafter the explants were transferred on a shoot-inducing medium with 50 mg/l kanamycin. (a, b) Reactivation of GFP expression in individual dedifferentiated cells of R17 line after 3 days of AzaC treatment; (c) Detail of R17 leaf petiole 10 days after AzaC treatment (arrow indicates a callus with GFP fluorescence) and (d) control R17 petiole without AzaC treatment; (e–h) gradual proliferation of selected reactivated cell/callus of R28 line (e) just after AzaC treatment, (f) 6 days, (g) 14 days and (h) 72 days after AzaC treatment. (a-d) fluorescence captured with the FITC filter set: bright green fluorescence of GFP, red fluorescence of chlorophyll and yellowish fluorescence of damaged and dead cells; (e-h) fluorescence with the EGFP filter set. Scale bars: 100 μm in (a, e, f), 200 μm in (b), 400 μm in (g, h), 500 μm in (c, d). (TIFF 1707 kb)
299_2017_2155_MOESM3_ESM.tif (1.6 mb)
Online Resource 3 GFP fluorescence in shoots of selected potato lines. Shoots of in vitro grown plants of (a, e) untransformed Désirée; (b, f) spontaneously silenced line R28; (c, g) line R17A with reactivated GFP and nptII; (d, h) line R28A with reactivated nptII only. Images were captured with (a-d) EGFP filter set and in (e-h) bright field. Scale bar: 3 mm. (TIFF 1680 kb)


  1. Arase S, Kasai M, Kanazawa A (2012) In planta assays involving epigenetically silenced genes reveal inhibition of cytosine methylation by genistein. Plant Methods 8:10. doi: 10.1186/1746-4811-8-10 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aufsatz W, Mette MF, van der Winden J et al (2002) RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci USA 99(Suppl 4):16499–16506. doi: 10.1073/pnas.162371499 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baubec T, Pecinka A, Rozhon W, Mittelsten Scheid O (2009) Effective, homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine. Plant J 57:542–554. doi: 10.1111/j.1365-313X.2008.03699.x CrossRefPubMedGoogle Scholar
  4. Beisler JA (1978) Isolation, characterization and properties of a labile hydrolysis product of the antitumour nucleoside, 5-azacytidine. J Med Chem 21:204–208. doi: 10.1021/jm00200a012 CrossRefPubMedGoogle Scholar
  5. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. doi: 10.1038/35053110 CrossRefPubMedGoogle Scholar
  6. Bolte S, Brown S, Satiat-Jeunemaitre B (2004) The N-myristoylated Rab-GTPase m-Rabmc is involved in post-Golgi trafficking events to the lytic vacuole in plant cells. J Cell Sci 117:943–954. doi: 10.1242/jcs.00920 CrossRefPubMedGoogle Scholar
  7. Calarco JP, Borges F, Donoghue MTA et al (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205. doi: 10.1016/j.cell.2012.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cokus SJ, Feng S, Zhang X et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219. doi: 10.1038/nature06745 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Coleman-Derr D, Zilberman D (2012) Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 8:e1002988. doi: 10.1371/journal.pgen.1002988 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davis SJ, Vierstra RD (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36:521–528. doi: 10.1023/A:1005991617182 CrossRefPubMedGoogle Scholar
  11. Deblaere R, Bytebier B, de Greve H et al (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788. doi: 10.1093/nar/13.13.4777 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dietze J, Blau A, Willmitzer L (1995) Agrobacterium-mediated transformation of potato (Solanum tuberosum). In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer-Verlag, Berlin, pp 24–29CrossRefGoogle Scholar
  13. Diez CM, Roessler K, Gaut BS (2014) Epigenetics and plant genome evolution. Curr Opin Plant Biol 18:1–8. doi: 10.1016/j.pbi.2013.11.017 CrossRefPubMedGoogle Scholar
  14. Dvořáková L, Srba M, Opatrny Z, Fischer L (2012) Hybrid proline-rich proteins: novel players in plant cell elongation? Ann Bot 109:453–462. doi: 10.1093/aob/mcr278 CrossRefPubMedGoogle Scholar
  15. Elhamamsy AR (2016) DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation. Cell Biochem Funct 34:289–298. doi: 10.1002/cbf.3183 CrossRefPubMedGoogle Scholar
  16. Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192. doi: 10.1016/S0168-9452(01)00559-3 CrossRefGoogle Scholar
  17. Esteller M (2005) DNA methylation and cancer therapy: new developments and expectations. Curr Opin Oncol. doi: 10.1097/01.cco.0000147383.04709.10 PubMedGoogle Scholar
  18. Eun CH, Takagi K, Il Park K et al (2012) Activation and epigenetic regulation of DNA transposon nDart1 in rice. Plant Cell Physiol 53:857–868. doi: 10.1093/pcp/pcs060 CrossRefPubMedGoogle Scholar
  19. Fieldes MA, Schaeffer SM, Krech MJ, Brown JCL (2005) DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theor Appl Genet 111:136–149. doi: 10.1007/s00122-005-2005-9 CrossRefPubMedGoogle Scholar
  20. Fojtova M, Van Houdt H, Depicker A, Kovarik A (2003) Epigenetic switch from posttranscriptional to transcriptional silencing is correlated with promoter hypermethylation. Plant Physiol 133:1240–1250. doi: 10.1104/pp.103.023796 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fraga HPF, Vieira LN, Caprestano CA et al (2012) 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant Cell Rep 31:2165–2176. doi: 10.1007/s00299-012-1327-8 CrossRefPubMedGoogle Scholar
  22. Ghoshal K, Datta J, Majumder S et al (2005) 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25:4727–4741. doi: 10.1128/MCB.25.11.4727-4741.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gruntman E, Qi Y, Slotkin RK, Roeder T et al (2008) Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinform 9:371. doi: 10.1186/1471-2105-9-371 CrossRefGoogle Scholar
  24. Guo HS, López-Moya JJ, García JA (1999) Mitotic stability of infection-induced resistance to plum Pox Potyvirus associated with transgene silencing and DNA methylation. Mol Plant Microb Interact 12:103–111. doi: 10.1094/MPMI.1999.12.2.103 CrossRefGoogle Scholar
  25. Helliwell CA, Varsha Wesley S, Wielopolska AJ, Waterhouse PM (2002) High-throughput vectors for efficient gene silencing in plants. Funct Plant Biol 29:1217–1225. doi: 10.1071/FP02033 CrossRefGoogle Scholar
  26. Hollenbach PW, Nguyen AN, Brady H et al (2010) A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One 5:e9001. doi: 10.1371/journal.pone.0009001 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Janoušek B, Široký J, Vyskot B (1996) Epigenetic control of sexual phenotype in a dioecious plant, Melandrium album. Mol Gen Genet 250:483–490. doi: 10.1007/BF02174037 CrossRefPubMedGoogle Scholar
  28. Jones PA, Taylor SM (1981) Hemimethylated duplex DNAs prepared from 5-azacytidine-treated cells. Nucleic Acids Res 9:2933–2947. doi: 10.1093/nar/9.12.2933 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kanazawa A, O’Dell M, Hellens RP (2007) Epigenetic inactivation of chalcone synthase-A transgene transcription in petunia leads to a reversion of the post-transcriptional gene silencing phenotype. Plant Cell Physiol 48:638–647. doi: 10.1093/pcp/pcm028 CrossRefPubMedGoogle Scholar
  30. Kankel MW, Ramsey DE, Stokes TL et al (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122PubMedPubMedCentralGoogle Scholar
  31. Kilby NJ, Leyser HMO, Furner IJ (1992) Promoter methylation and progressive transgene inactivation in Arabidopsis. Plant Mol Biol 20:103–112. doi: 10.1007/BF00029153 CrossRefPubMedGoogle Scholar
  32. Kim SI, Veena Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791. doi: 10.1111/j.1365-313X.2007.03183.x CrossRefPubMedGoogle Scholar
  33. Kiselev KV, Tyunin AP, Manyakhin AY, Zhuravlev YN (2011) Resveratrol content and expression patterns of stilbene synthase genes in Vitis amurensis cells treated with 5-azacytidine. Plant Cell Tissue Organ Cult 105:65–72. doi: 10.1007/s11240-010-9842-1 CrossRefGoogle Scholar
  34. Kovařík A, Van Houdt H, Holý A, Depicker A (2000) Drug-induced hypomethylation of a posttranscriptionally silenced transgene locus of tobacco leads to partial release of silencing. FEBS Lett 467:47–51. doi: 10.1016/S0014-5793(00)01077-2 CrossRefPubMedGoogle Scholar
  35. Krizova K, Fojtova M, Depicker A, Kovarik A (2009) Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles. Plant Physiol 149:1493–1504. doi: 10.1104/pp.108.133165 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Leljak-Levanić D, Mrvková M, Turečková V et al (2016) Hormonal and epigenetic regulation during embryogenic tissue habituation in Cucurbita pepo L. Plant Cell Rep 35:77–89. doi: 10.1007/s00299-015-1869-7 CrossRefPubMedGoogle Scholar
  37. Lin KT, Momparler RL, Rivard GE (1981) High-performance liquid chromatographic analysis of chemical stability of 5-aza-2′-deoxycytidine. J Pharm Sci 70:1228–1232. doi: 10.1002/jps.2600701112 CrossRefPubMedGoogle Scholar
  38. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x CrossRefGoogle Scholar
  39. Lister R, O’Malley RC, Tonti-Filippini J et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536. doi: 10.1016/j.cell.2008.03.029 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu L, Chen X (2016) RNA quality control as a key to suppressing RNA silencing of endogenous genes in plants. Mol Plant 9:826–836. doi: 10.1016/j.molp.2016.03.011 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lunerová-Bedřichová J, Bleys A, Fojtová M et al (2008) Trans-generation inheritance of methylation patterns in a tobacco transgene following a post-transcriptional silencing event. Plant J 54:1049–1062. doi: 10.1111/j.1365-313X.2008.03475.x CrossRefPubMedGoogle Scholar
  42. Luo Z, Chen Z (2007) Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 19:943–958. doi: 10.1105/tpc.106.045724 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Marfil CF, Asurmendi S, Masuelli RW (2012) Changes in micro RNA expression in a wild tuber-bearing Solanum species induced by 5-azacytidine treatment. Plant Cell Rep 31:1449–1461. doi: 10.1007/s00299-012-1260-x CrossRefPubMedGoogle Scholar
  44. Marjanac G, Karimi M, Naudts M et al (2009) Gene silencing induced by hairpin or inverted repeated sense transgenes varies among promoters and cell types. New Phytol 184:851–864. doi: 10.1111/j.1469-8137.2009.03011.x CrossRefPubMedGoogle Scholar
  45. McCabe MS, Mohapatra UB, Debnath SC et al (1999) Integration, expression and inheritance of two linked T-DNA marker genes in transgenic lettuce. Mol Breed 5:329–344. doi: 10.1023/A:1009681615365 CrossRefGoogle Scholar
  46. McCabe MT, Brandes JC, Vertino PM (2009) Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res 15:3927–3937. doi: 10.1158/1078-0432.CCR-08-2784 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mirouze M, Reinders J, Bucher E et al (2009) Selective epigenetic control of retrotransposition in Arabidopsis. Nature 461:1–5. doi: 10.1038/nature08328 CrossRefGoogle Scholar
  48. Muskens MWM, Vissers APA, Mol JNM, Kooter JM (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol Biol 43:243–260. doi: 10.1023/a:1006491613768 CrossRefPubMedGoogle Scholar
  49. Nicholson SJ, Srivastava V (2009) Transgene constructs lacking transcription termination signal induce efficient silencing of endogenous targets in Arabidopsis. Mol Genet Genom 282:319–328. doi: 10.1007/s00438-009-0467-1 CrossRefGoogle Scholar
  50. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914. doi: 10.1093/jxb/eri285 CrossRefPubMedGoogle Scholar
  51. Nocarová E, Opatrný Z, Fischer L (2010) Successive silencing of tandem reporter genes in potato (Solanum tuberosum) over 5 years of vegetative propagation. Ann Bot 106:565–572. doi: 10.1093/aob/mcq153 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Noceda C, Salaj T, Pérez M et al (2009) DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra Arn. cell culture. Trees Struct Funct 23:1285–1293. doi: 10.1007/s00468-009-0370-8 CrossRefGoogle Scholar
  53. Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. doi: 10.1016/S0304-3940(02)01423-4 CrossRefPubMedGoogle Scholar
  54. Sallaud C, Meynard D, van Boxtel J et al (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408. doi: 10.1007/s00122-002-1184-x CrossRefPubMedGoogle Scholar
  55. Santi DV, Norment A, Garrett CE (1984) Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci USA 81:6993–6997. doi: 10.1073/pnas.81.22.6993&lt CrossRefPubMedPubMedCentralGoogle Scholar
  56. Scorza R, Callahan A, Dardick C et al (2013) Genetic engineering of Plum pox virus resistance: “HoneySweet” plum—from concept to product. Plant Cell Tissue Organ Cult 115:1–12. doi: 10.1007/s11240-013-0339-6 CrossRefGoogle Scholar
  57. Tyunin AP, Kiselev KV (2016) Alternations in VaSTS gene cytosine methylation and t-resveratrol production in response to UV-C irradiation in Vitis amurensis Rupr. cells. Plant Cell Tissue Organ Cult 124:33–45. doi: 10.1007/s11240-015-0872-6 CrossRefGoogle Scholar
  58. Tyunin AP, Kiselev KV, Zhuravlev YN (2012) Effects of 5-azacytidine induced DNA demethylation on methyltransferase gene expression and resveratrol production in cell cultures of Vitis amurensis. Plant Cell Tissue Organ Cult 111:91–100. doi: 10.1007/s11240-012-0175-0 CrossRefGoogle Scholar
  59. Wang MB, Waterhouse PM (2000) High-efficiency silencing of a beta-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Mol Biol 43:67–82. doi: 10.1023/A:1006490331303 CrossRefPubMedGoogle Scholar
  60. Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919. doi: 10.1126/science.1186366 CrossRefPubMedGoogle Scholar
  61. Zilberman D (2008) The evolving functions of DNA methylation. Curr Opin Plant Biol 11:554–559. doi: 10.1016/j.pbi.2008.07.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Plant Experimental Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic

Personalised recommendations