Plant Cell Reports

, Volume 36, Issue 4, pp 611–620 | Cite as

Selection of transformation-efficient barley genotypes based on TFA (transformation amenability) haplotype and higher resolution mapping of the TFA loci

  • Hiroshi Hisano
  • Brigid Meints
  • Matthew J. Moscou
  • Luis Cistue
  • Begoña Echávarri
  • Kazuhiro Sato
  • Patrick M. Hayes
Original Article


Key message

The genetic substitution of transformation amenability alleles from ‘Golden Promise’ can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars.


Barley (Hordeum vulgare) cv. ‘Golden Promise’ is one of the most useful and well-studied cultivars for genetic manipulation. In a previous report, we identified several transformation amenability (TFA) loci responsible for Agrobacterium-mediated transformation using the F2 generation of immature embryos, derived from ‘Haruna Nijo’ × ‘Golden Promise,’ as explants. In this report, we describe higher density mapping of these TFA regions with additional SNP markers using the same transgenic plants. To demonstrate the robustness of transformability alleles at the TFA loci, we genotyped 202 doubled haploid progeny from the cross ‘Golden Promise’ × ‘Full Pint.’ Based on SNP genotype, we selected lines having ‘Golden Promise’ alleles at TFA loci and used them for transformation. Of the successfully transformed lines, DH120366 came the closest to achieving a level of transformation efficiency comparable to ‘Golden Promise.’ The results validate that the genetic substitution of TFA alleles from ‘Golden Promise’ can facilitate the development of transformation-efficient lines from recalcitrant barley cultivars.


Agrobacterium tumefaciens Doubled haploid Hordeum vulgare (barley) Single nucleotide polymorphism Transformation 



We thank Tanya Filichkin and Laura Helgerson for their parts in developing the Oregon Promise population, Yuka Motoi (IPSR, Okayama Univ.) for technical assistance, and Dr. Yukihiro Ito (Tohoku Univ., Japan) for providing the pBUH3 vector. This work was supported by the Spanish Ministry of Science and Innovation (Project AGL2015-69435-C3-2-R) to L.C., the Gatsby Foundation and BBSRC Institutional Strategic Programme (BB/J004553/1) to M.M., and JSPS KAKENHI, Grant Numbers 24880025 and 16K18634 to H.H.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2017_2107_MOESM1_ESM.docx (164 kb)
Supplementary material 1 (DOCX 163 KB)
299_2017_2107_MOESM2_ESM.xlsx (521 kb)
Supplementary material 2 (XLSX 520 KB)


  1. Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore KS (2007) Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in Plants. Plant Cell 19:1695–1708CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31–45CrossRefGoogle Scholar
  3. Cistué L, Ramos A, Castillo AM, Romagosa I (1994) Production of large number of doubled haploid plants from barley anthers pretreated with high concentrations of mannitol. Plant Cell Rep 13:709–712CrossRefPubMedGoogle Scholar
  4. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szűcs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:1–13CrossRefGoogle Scholar
  5. Cogan NOI, Newbury HJ, Oldacres AM, Lynn JR, Kearsey MJ, King GJ, Puddephat IJ (2004) Identification and characterization of QTL controlling Agrobacterium-mediated transient and stable transformation of Brassica oleracea. Plant Biotechnol J 2:59–69CrossRefPubMedGoogle Scholar
  6. Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392CrossRefPubMedGoogle Scholar
  7. Deng W, Casao MC, Wang P, Sato K, Hayes PM, Finnegan EJ, Trevaskis B (2015) Direct links between the vernalization response and other key traits of cereal crops. Nat Commun 6:5882CrossRefPubMedGoogle Scholar
  8. Echávarri B, Cistué L (2016) Enhancement in androgenesis efficiency in barley (Hordeum vulgare L.) and bread wheat (Triticum aestivum L.) by the addition of dimethyl sulfoxide to the mannitol pretreatment medium. Plant Cell Tiss Organ Cult 125:11–22CrossRefGoogle Scholar
  9. Harwood WA (2012) Advances and remaining challenges in the transformation of barley and wheat. J Exp Bot 63:1791–1798CrossRefPubMedGoogle Scholar
  10. Hensel G, Valkov V, Middlefell-Williams J, Kumlehn J (2008) Efficient generation of transgenic barley: The way forward to modulate plant–microbe interactions. J Plant Physiol 165:71–82CrossRefPubMedGoogle Scholar
  11. Hisano H, Sato K (2016) Genomic regions responsible for amenability to Agrobacterium-mediated transformation in barley. Sci Rep 6:37505CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ikeuchi M, Sugimoto K, Iwase A (2013) Plant callus: mechanisms of induction and repression. The Plant Cell 25:3159–3173CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K (2016) Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442–1451CrossRefPubMedGoogle Scholar
  14. Iwata H, Ninomiya S (2006) AntMap: Constructing genetic linkage maps using an ant colony optimization algorithm. Breed Sci 56:371–377CrossRefGoogle Scholar
  15. Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261CrossRefPubMedGoogle Scholar
  16. Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M-J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco SC, Register JC III, Zhao Z-Y, Xu D, Jones TJ, Gordon-Kamm WJ (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015CrossRefPubMedCentralGoogle Scholar
  17. Lü B, Wu J-J, Fu D-l (2015) Constructing the barley model for genetic transformation in Triticeae. J Integr Agric 14:453–468CrossRefGoogle Scholar
  18. Mrízová K, Holasková E, Öz MT, Jiskrová E, Frébort I, Galuszka P (2014) Transgenic barley: a prospective tool for biotechnology and agriculture. Biotechnol Adv 32:137–157CrossRefPubMedGoogle Scholar
  19. Nam J, Matthysse AG, Gelvin SB (1997) Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9:317–333CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nigorikawa M, Watanabe A, Furukawa K, Sonoki T, Ito Y (2012) Enhanced saccharification of rice straw by overexpression of rice exo-glucanase. Rice 5:14CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nishimura A, Aichi I, Matsuoka M (2007) A protocol for Agrobacterium-mediated transformation in rice. Nat Protoc 1:2796–2802CrossRefGoogle Scholar
  22. Sato K, Yamane M, Yamaji N, Kanamori H, Tagiri A, Schwerdt JG, Fincher GB, Matsumoto T, Takeda K, Komatsuda T (2016) Alanine aminotransferase controls seed dormancy in barley. Nat Commun 7:11625CrossRefPubMedPubMedCentralGoogle Scholar
  23. Sparrow PAC, Townsend TM, Arthur A, Dale PJ, Irwin JA (2004) Genetic analysis of Agrobacterium tumefaciens susceptibility in Brassica oleracea. Theor Appl Genet 108:644–650CrossRefPubMedGoogle Scholar
  24. The International Barley Sequencing Consortium (IBSC) (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716Google Scholar
  25. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376CrossRefGoogle Scholar
  26. Yeo FKS, Hensel G, Vozábová T, Martin-Sanz A, Marcel TC, Kumlehn J, Niks RE (2014) Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. Theor Appl Genet 127:325–337CrossRefPubMedGoogle Scholar
  27. Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
  2. 2.Department Crop and Soil SciencesWashington State UniversityMount VernonUSA
  3. 3.The Sainsbury LaboratoryNorwich Research ParkNorwichUK
  4. 4.Department Genetica y Produccion VegetalEstacion Experimental de Aula DeiZaragozaSpain
  5. 5.Department Crop and Soil ScienceOregon State UniversityCorvallisUSA

Personalised recommendations