Plant Cell Reports

, Volume 36, Issue 1, pp 89–102 | Cite as

LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis

  • Congcong Wang
  • Peitao Lü
  • Silin Zhong
  • Houbin Chen
  • Biyan ZhouEmail author
Original Article


Key message

LcMCII - 1 is a type II metacaspase. Over-expression of LcMCII- 1 in Arabidopsis promoted ROS-dependent and natural senescence. Virus-induced LcMCII- 1 silencing delayed the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis .


Litchi is an evergreen woody fruit tree that is widely cultivated in subtropical and tropical regions. Its floral buds are mixed with axillary or apical panicle primordia, leaf primordia and rudimentary leaves. A low spring temperature is vital for litchi production as it promotes the abscission of the rudimentary leaves, which could otherwise prevent panicle development. Hence, climate change could present additional challenges for litchi production. We previously reported that reactive oxygen species (ROS) can substitute low-temperature treatment to induce the senescence of rudimentary leaves. We have now identified from RNA-Seq data a litchi type II metacaspase gene, LcMCII-1, that is responsive to ROS. Silencing LcMCII-1 by virus-induced gene silencing delayed ROS-dependent senescence. The ectopic over-expression of LcMCII-1 in transgenic Arabidopsis promoted ROS-dependent and natural senescence. Consistently, the transient expression of LcMCII-1 in tobacco leaf by agroinfiltration resulted in leaf yellowing. Our findings demonstrate that LcMCII-1 is positively involved in the regulation of rudimentary leaf senescence in litchi and provide a new target for the future molecular breeding of new cultivars that can set fruit in warmer climates.


Rudimentary leaf Senescence Metacaspase Litchi VIGS Reactive oxygen species 



This work was supported by the National Natural Science Foundation (project no. 31071760) and the China Agricultural Industry Project (project no. CARS-33-08).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2016_2059_MOESM1_ESM.pdf (7.7 mb)
Supplementary material 1 (PDF 7837 kb)
299_2016_2059_MOESM2_ESM.doc (42 kb)
Supplementary material 2 (DOC 41 kb)


  1. Acosta-Maspons A, Sepúlveda-García E, Sánchez-Baldoquín L, Marrero-Gutiérrez J, Pons T, Rocha-Sosa M, González L (2014) Two aspartate residues at the putative p10 subunit of a type II metacaspase from Nicotiana tabacum L. may contribute to the substrate-binding pocket. Planta 239(1):147–160CrossRefPubMedGoogle Scholar
  2. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2(2):109–113CrossRefPubMedGoogle Scholar
  3. Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AJ, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. PNAS 102(40):14463–14468CrossRefPubMedPubMedCentralGoogle Scholar
  4. Choi CJ, Berges JA (2013) New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis 4:e490CrossRefPubMedPubMedCentralGoogle Scholar
  5. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743CrossRefPubMedGoogle Scholar
  6. Cocheme HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283(4):1786–1798CrossRefPubMedGoogle Scholar
  7. Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, Epple P (2010) Arabidopsis Type I Metacaspases control cell death. Science 330(6009):1393–1397CrossRefPubMedGoogle Scholar
  8. Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL (2014) The plant metacaspase AtMC1 in pathogen-triggered programmed cell death and aging: functional linkage with autophagy. Cell Death Differ 21(9):1399–1408CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cui ZY (2010) Cloning and expression analysis of AP1 and CDPK homologue gene in Litchi (Litchi chinensis Sonn.). Dissertation, South China Agricultural UniversityGoogle Scholar
  10. Dodge AD (1971) The mode of action of the bipyridylium herbicides, paraquat and diquat. Endeavour 30:130–135CrossRefPubMedGoogle Scholar
  11. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(4):742–758CrossRefPubMedPubMedCentralGoogle Scholar
  12. He R, Drury GE, Rotari VI, Gordon A, Willer M, Farzaneh T, Woltering EJ, Gallois P (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 283(2):774–783CrossRefPubMedGoogle Scholar
  13. Huang L, Zhang H, Hong Y, Liu S, Li D, Song F (2015) Stress-responsive expression, subcellular localization and protein–protein interactions of the rice Metacaspase family. Int J Mol Sci 16(7):16216–16241CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lam E, Zhang Y (2012) Regulating the reapers: activating metacaspases for programmed cell death. Trends Plant Sci 17(8):487–494CrossRefPubMedGoogle Scholar
  15. Li XJ, Zhang JQ, Wu ZC, Lai B, Huang XM, Qin YH, Wang HC, Hu GB (2016) Functional characterization of a glucosyltransferase gene, LcUFGT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis. Physiol Plant 156(2):139–149CrossRefGoogle Scholar
  16. Lim H, Kim S, Park E, Lim C (2007) Overexpression of a metacaspase gene stimulates cell growth and stress response in Schizosaccharomyces pombe. Can J Microbiol 53(8):1016–1023CrossRefPubMedGoogle Scholar
  17. Liu WW, Chen HB, Lu XY, Rahman MJ, Zhong S, Zhou BY (2015) Identification of nitric oxide responsive genes in the floral buds of Litchi chinensis. Biol Plant 59(1):115–122CrossRefGoogle Scholar
  18. Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B (2014) De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genom 15:805CrossRefGoogle Scholar
  19. Lü P, Zhang C, Liu J, Liu X, Jiang G, Jiang X, Khan MA, Wang L, Hong B, Gao J (2014) RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. Plant J 78(4):578–590CrossRefPubMedGoogle Scholar
  20. Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Fröhlich K (2004) Apoptosis in yeast. Curr Opin Microbiol 7(6):655–660CrossRefPubMedGoogle Scholar
  21. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25(2):237–245CrossRefPubMedGoogle Scholar
  22. Renner T, Bragg J, Driscoll HE, Cho J, Jackson AO, Specht CD (2009) Virus-induced gene silencing in the culinary ginger (Zingiber officinale): an effective mechanism for down-regulating gene expression in tropical monocots. Mol Plant 2(5):1084–1094CrossRefPubMedGoogle Scholar
  23. Robertson D (2004) VIGS vectors for gene silencing: many targets, many tools. Annu Rev Plant Biol 55:495–519CrossRefPubMedGoogle Scholar
  24. Senthil-Kumar M, Mysore KS (2011) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16(12):656–665CrossRefPubMedGoogle Scholar
  25. Senthil-Kumar M, Mysore KS (2014) Tobacco rattle virus-based virus-induced gene silencing in Nicotiana benthamiana. Nat Protoc 9(7):1549–1562CrossRefPubMedGoogle Scholar
  26. Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14(9):R339–R340CrossRefPubMedGoogle Scholar
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  28. Tian J, Pei H, Zhang S, Chen J, Chen W, Yang R, Meng Y, You J, Gao J, Ma N (2014) TRV-GFP: a modified Tobacco rattle virus vector for efficient and visualizable analysis of gene function. J Exp Bot 65(1):311–322CrossRefPubMedGoogle Scholar
  29. Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E, Bozhkov PV (2011) Metacaspases. Cell Death Differ 18:1279–1288CrossRefPubMedPubMedCentralGoogle Scholar
  30. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6(4):961–967PubMedGoogle Scholar
  31. Velásquez AC, Chakravarthy S, Martin GB (2009) Virus-induced gene silencing (VIGS) in Nicotiana benthamiana and tomato. J Vis Exp 28:e1292Google Scholar
  32. Vercammen D (2004) Type II Metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279(44):45329–45336CrossRefPubMedGoogle Scholar
  33. Wang Q, Chen J, Li Y (2004) Nondestructive and rapid estimation of leaf chlorophyll and nitrogen status of peace lily using a chlorophyll meter. J Plant Nutr 27(3):557–569CrossRefGoogle Scholar
  34. Wang B, Guo X, Wang C, Ma J, Niu F, Zhang H, Yang B, Liang W, Han F, Jiang Y (2015a) Identification and characterization of plant-specific NAC gene family in canola (Brassica napus L.) reveal novel members involved in cell death. Plant Mol Biol 87(4–5):395–411CrossRefPubMedGoogle Scholar
  35. Wang TD, Zhang HF, Wu ZC, Li JG, Huang XM, Wang HC (2015b) Sugar uptake in the aril of Litchi fruit depends on the apoplasmic post-phloem transport and the activity of proton pumps and the putative transporter LcSUT4. Plant Cell Physiol 56(2):377–387CrossRefPubMedGoogle Scholar
  36. Watanabe N, Lam E (2005) Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J Biol Chem 280(15):14691–14699CrossRefPubMedGoogle Scholar
  37. Watanabe N, Lam E (2011) Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant J 66(6):969–982CrossRefPubMedGoogle Scholar
  38. Wu Y, Yi G, Zhou B, Zeng J, Huang Y (2007) The advancement of research on litchi and longan germplasm resources in China. Sci Hortic 114(3):143–150CrossRefGoogle Scholar
  39. Yamamoto A, Nakamura T, Adu-Gyamfi JJ, Saigusa M (2002) Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502). J Plant Nutr 25(10):2295–2301CrossRefGoogle Scholar
  40. Zhang X, Henriques R, Lin S, Niu Q, Chua N (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1(2):641–646CrossRefPubMedGoogle Scholar
  41. Zhou B, Chen H, Huang X, Li N, Hu Z, Gao Z, Lu Y (2008) Rudimentary leaf abortion with the development of panicle in litchi: changes in ultrastructure, antioxidant enzymes and phytohormones. Sci Hortic 117(3):288–296CrossRefGoogle Scholar
  42. Zhou B, Li N, Zhang Z, Huang X, Chen H, Hu Z, Pang X, Liu W, Lu X (2012) Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis. Biol Plant 56(2):321–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Congcong Wang
    • 1
  • Peitao Lü
    • 2
  • Silin Zhong
    • 2
  • Houbin Chen
    • 1
  • Biyan Zhou
    • 1
    Email author
  1. 1.Guangdong Litchi Engineering Research Center, College of HorticultureSouth China Agricultural UniversityGuangzhouChina
  2. 2.State Key Laboratory of Agrobiotechnology, School of Life SciencesChinese University of Hong KongHong KongChina

Personalised recommendations