Plant Cell Reports

, Volume 35, Issue 11, pp 2241–2255 | Cite as

A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case

  • Zoe HiliotiEmail author
  • Ioannis Ganopoulos
  • Sabna Ajith
  • Ioannis Bossis
  • Athanasios Tsaftaris
Original Article


Key message

A selection-free, highly efficient targeted mutagenesis approach based on a novel ZFN monomer arrangement for genome engineering in tomato reveals plant trait modifications.


How to achieve precise gene targeting in plants and especially in crops remains a long-sought goal for elucidating gene function and advancing molecular breeding. To address this issue, zinc finger nuclease (ZFN)-based technology was developed for the Solanum lycopersicum seed system. A ZFN architecture design with an intronic sequence between the two DNA recognition sites was evaluated for its efficiency in targeted gene mutagenesis. Custom engineered ZFNs for the developmental regulator LEAFY-COTYLEDON1-LIKE4 (L1L4) coding for the β subunit of nuclear factor Y, when transiently expressed in tomato seeds, cleaved the target site and stimulated imperfect repair driven by nonhomologous end-joining, thus, introducing mutations into the endogenous target site. The successful in planta application of the ZFN platform resulted in L1L4 mutations which conferred heterochronic phenotypes during development. Our results revealed that sequence changes upstream of the DNA binding domain of L1L4 can lead to phenotypic diversity including fruit organ. These results underscore the utility of engineered ZFN approach in targeted mutagenesis of tomato plant which may accelerate translational research and tomato breeding.


Transcription factor Zinc finger nuclease technology Heterochronic Development Tomato Fruit 



This work was benefited from the networking activities within the European funded COST ACTION FA1106 Quality Fruit. SA was supported by the European funded Erasmus Mundus Panacea Project. We are grateful to Prof. Petros Koidis, Fotini Dalipi, Theodoros Moysiadis and Dimitrios Valasiadis for valuable comments on the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2016_2031_MOESM1_ESM.docx (44 kb)
Supplementary material 1 (DOCX 44 kb)
299_2016_2031_MOESM2_ESM.docx (193 kb)
Supplementary material 2 (DOCX 192 kb)
299_2016_2031_MOESM3_ESM.doc (36 kb)
Supplementary material 3 (DOC 36 kb)
299_2016_2031_MOESM4_ESM.docx (17 kb)
Supplementary material 4 (DOCX 16 kb)


  1. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175PubMedPubMedCentralGoogle Scholar
  2. Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci 95:10570–10575CrossRefPubMedPubMedCentralGoogle Scholar
  3. Cai CQ, Doyon Y, Ainley WM, Miller JC, Dekelver RC, Moehle EA, Rock JM, Lee YL, Garrison R, Schulenberg L, Blue R, Worden A, Baker L, Faraji F, Zhang L, Holmes MC, Rebar EJ, Collingwood TN, Rubin-Wilson B, Gregory PD, Urnov FD, Petolino JF (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69:699–709CrossRefPubMedGoogle Scholar
  4. Casson SA, Lindsey K (2006) The turnip mutant of Arabidopsis reveals that LEAFY COTYLEDON1 expression mediates the effects of auxin and sugars to promote embryonic cell identity. Plant Physiol 142(2):526–541CrossRefPubMedPubMedCentralGoogle Scholar
  5. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708CrossRefPubMedPubMedCentralGoogle Scholar
  6. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science (New York, NY) 325:433CrossRefGoogle Scholar
  7. Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2(6):513–523CrossRefPubMedPubMedCentralGoogle Scholar
  8. Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409CrossRefGoogle Scholar
  9. Henikoff S, Comai L (2003) Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54:375–401CrossRefPubMedGoogle Scholar
  10. Hilioti Z, Ganopoulos I, Bossis I, Tsaftaris A (2014) LEC1-LIKE paralog transcription factor: how to survive extinction and fit in NF-Y protein complex. Gene 543:220–233CrossRefPubMedGoogle Scholar
  11. Hughes NM, Morley CB, Smith WK (2007) Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species. New Phytol 175:675–685CrossRefPubMedGoogle Scholar
  12. Ito Y, Thirumurugan T, Serizawa A, Hiratsu K, Ohme-Takagi M, Kurata N (2011) Aberrant vegetative and reproductive development by overexpression and lethality by silencing of OsHAP3E in rice. Plant Sci 181:105–110CrossRefPubMedGoogle Scholar
  13. Junker A, Monke G, Rutten T, Keilwagen J, Seifert M, Thi TM, Renou JP, Balzergue S, Viehover P, Hahnel U, Ludwig-Muller J, Altschmied L, Conrad U, Weisshaar B, Baumlein H (2012) Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. Plant J 71:427–442PubMedGoogle Scholar
  14. Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, Hattori T (2005) LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant Cell Physiol 46:399–406CrossRefPubMedGoogle Scholar
  15. Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72CrossRefPubMedGoogle Scholar
  16. Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18CrossRefPubMedPubMedCentralGoogle Scholar
  17. Laurens N, Rusling DA, Pernstich C, Brouwer I, Halford SE, Wuite GJL (2012) DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics. Nucleic Acids Res 40:4988–4997CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lee H, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc Natl Acad Sci 100:2152–2156CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li X-Y, Mantovani R, van Huijsduijnen RH, Andre I, Benoist C, Mathis D (1992) Evolutionary variation of the CCAAT-binding transcription factor NF-Y. Nucleic Acids Res 20:1087–1091CrossRefPubMedPubMedCentralGoogle Scholar
  20. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251CrossRefPubMedPubMedCentralGoogle Scholar
  21. Li S, Li K, Ju Z, Cao D, Fu D, Zhu H, Zhu B, Luo Y (2016) Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC Genom 17:36CrossRefGoogle Scholar
  22. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93:1195–1205CrossRefPubMedGoogle Scholar
  24. Luckwill LC (1943) The genus Lycopersicon: A historical, biological, and taxonomic survey of the wild and cultivated tomatoes. Scotland Aberdeen University Press, AberdeenGoogle Scholar
  25. Mandell JG, Barbas CF 3rd (2006) Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleci Acids Res 34:W516–W523CrossRefGoogle Scholar
  26. Mani M, Kandavelou K, Dy FJ, Durai S, Chandrasegaran S (2005a) Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun 335:447–457CrossRefPubMedGoogle Scholar
  27. Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S (2005b) Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 334:1191–1197CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239:15–27CrossRefPubMedGoogle Scholar
  29. Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154:1079–1087CrossRefPubMedPubMedCentralGoogle Scholar
  30. Meinke DW (1992) A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science (New York NY) 258:1647–1650CrossRefGoogle Scholar
  31. Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064CrossRefPubMedPubMedCentralGoogle Scholar
  32. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785CrossRefPubMedGoogle Scholar
  33. Morton J, Davis MW, Jorgensen EM, Carroll D (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci USA 103:16370–16375CrossRefPubMedPubMedCentralGoogle Scholar
  34. Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107:12034–12039CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pesaresi P, Mizzotti C, Colombo M, Masiero S (2014) Genetic regulation and structural changes during tomato fruit development and ripening. Front Pant Sci 5:124. doi: 10.3389/fpls.2014.00124
  36. Rusling DA, Laurens N, Pernstich C, Wuite GJL, Halford SE (2012) DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations. Nucleic Acids Res 40:4977–4987CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schlegel HG, Lafferty R, Krauss I (1970) The isolation of mutants not accumulating poly-beta-hydroxybutyric acid. Arch Mikrobiol 71:283–294CrossRefPubMedGoogle Scholar
  38. Schleif R (1992) DNA looping. Annu Rev Biochem 61:199–223CrossRefPubMedGoogle Scholar
  39. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441CrossRefPubMedGoogle Scholar
  40. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793CrossRefPubMedGoogle Scholar
  41. Tan H, Yang X, Zhang F, Zheng X, Qu C, Mu J, Fu F, Li J, Guan R, Zhang H, Wang G, Zuo J (2011) Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiol 156:1577–1588CrossRefPubMedPubMedCentralGoogle Scholar
  42. To A, Valon C, Savino G, Guilleminot J, Devic M, Giraudat J, Parcy F (2006) A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell 18:1642–1651CrossRefPubMedPubMedCentralGoogle Scholar
  43. Todd JJ, Vodkin LO (1993) Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol 102:663–670PubMedPubMedCentralGoogle Scholar
  44. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445CrossRefPubMedPubMedCentralGoogle Scholar
  45. Vanamee ES, Santagata S, Aggarwal AK (2001) FokI requires two specific DNA sites for cleavage. J Mol Biol 309:69–78CrossRefPubMedGoogle Scholar
  46. West M, Yee KM, Danao J, Zimmerman JL, Fischer RL, Goldberg RB, Harada JJ (1994) LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6:1731–1745CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705CrossRefPubMedGoogle Scholar
  48. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zoe Hilioti
    • 1
    Email author
  • Ioannis Ganopoulos
    • 1
  • Sabna Ajith
    • 1
  • Ioannis Bossis
    • 2
  • Athanasios Tsaftaris
    • 1
  1. 1.Institute of Applied BiosciencesCentre for Research and Technology HellasThessalonikiGreece
  2. 2.Animal Science DepartmentAgricultural University of AthensAthensGreece

Personalised recommendations