Plant Cell Reports

, Volume 35, Issue 7, pp 1451–1468 | Cite as

The expanding footprint of CRISPR/Cas9 in the plant sciences

Review

Abstract

CRISPR/Cas9 has evolved and transformed the field of biology at an unprecedented pace. From the initial purpose of introducing a site specific mutation within a genome of choice, this technology has morphed into enabling a wide array of molecular applications, including site-specific transgene insertion and multiplexing for the simultaneous induction of multiple cleavage events. Efficiency, specificity, and flexibility are key attributes that have solidified CRISPR/Cas9 as the genome-editing tool of choice by scientists from all areas of biology. Within the field of plant biology, several CRISPR/Cas9 technologies, developed in other biological systems, have been successfully implemented to probe plant gene function and to modify specific crop traits. It is anticipated that this trend will persist and lead to the development of new applications and modifications of the CRISPR technology, adding to an ever-expanding collection of genome-editing tools. We envision that these tools will bestow plant researchers with new utilities to alter genome complexity, engineer site-specific integration events, control gene expression, generate transgene-free edited crops, and prevent or cure plant viral disease. The successful implementation of such utilities will represent a new frontier in plant biotechnology.

Keywords

Cas9 CRISPR Crop improvement Gene editing Gene knock-in Functional genomics 

Abbreviations

CRISPR

Clustered regularly interspaced short palindromic repeats

Cas9

CRISPR-associated protein 9

dCas9

Dead Cas9

PAM

Protospacer adjacent motif

RNP

Ribonucleoprotein

sgRNA

Single guide RNA

TALEN

Transcription activator-like effector nuclease

References

  1. Ahloowalia BS, Maluszynski M (2001) Induced mutations—a new paradigm in plant breeding. Euphytica 118:167–173CrossRefGoogle Scholar
  2. Ali Z, Abul-faraj A, Li L, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes NJ, Voytas DF et al (2015a) Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant 8:1288–1291PubMedCrossRefGoogle Scholar
  3. Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM (2015b) CRISPR/Cas9-mediated viral interference in plants. Genome Biol 16:238PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anton T, Bultmann S, Leonhardt H, Markaki Y (2014) Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5:163–172PubMedPubMedCentralCrossRefGoogle Scholar
  5. Auer TO, Duroure K, Cian AD, Concordet JP, Bene FD (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bains GS, Howard HW (1950) Haploid plants of Solanum demissum. Nature 166:795PubMedCrossRefGoogle Scholar
  7. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat Plants 1:15145CrossRefGoogle Scholar
  9. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39PubMedPubMedCentralCrossRefGoogle Scholar
  10. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84PubMedCrossRefGoogle Scholar
  11. Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ (2010) Plasmodesmata: gateways to local and systemic virus infection. Mol Plant Microbe Interact 23:1403–1412PubMedCrossRefGoogle Scholar
  12. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846PubMedCrossRefGoogle Scholar
  14. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiol Read Engl 151:2551–2561CrossRefGoogle Scholar
  15. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52PubMedCrossRefGoogle Scholar
  16. Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72PubMedCrossRefGoogle Scholar
  17. Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cardi T (2016) Cisgenesis and genome editing: combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breed 135:139–147CrossRefGoogle Scholar
  19. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol. doi:10.1111/mpp.12375 PubMedGoogle Scholar
  20. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen K, Gao C (2013) Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep 33:575–583PubMedCrossRefGoogle Scholar
  22. Chen C, Fenk LA, de Bono M (2013) Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Res 41:e193PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen X, Li M, Feng X, Guang S (2015) Targeted Chromosomal Translocations And Essential Gene Knockout Using CRISPR/Cas9 technology in Caenorhabditis elegans. Genetics 201:1295–1306PubMedCrossRefGoogle Scholar
  24. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kühn R (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548PubMedCrossRefGoogle Scholar
  26. Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161PubMedCrossRefGoogle Scholar
  27. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K (2014) Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res 115:488–492PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15PubMedCrossRefGoogle Scholar
  30. Dong ZQ, Chen TT, Zhang J, Hu N, Cao MY, Dong FF, Jiang YM, Chen P, Lu C, Pan MH (2016). Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells. Antiviral Res 130:50–57PubMedCrossRefGoogle Scholar
  31. Dunwell JM (2010) Haploids in flowering plants: origins and exploitation. Plant Biotechnol J 8:377–424PubMedCrossRefGoogle Scholar
  32. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359PubMedCrossRefGoogle Scholar
  34. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232PubMedPubMedCentralCrossRefGoogle Scholar
  35. Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics 43:37–43PubMedCrossRefGoogle Scholar
  36. Fichtner F, Castellanos RU, Ülker B (2014) Precision genetic modifications: a new era in molecular biology and crop improvement. Planta 239:921–939PubMedCrossRefGoogle Scholar
  37. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gamper HB, Parekh H, Rice MC, Bruner M, Youkey H, Kmiec EB (2000) The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res 28:4332–4339PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110PubMedCrossRefGoogle Scholar
  40. Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71PubMedCrossRefGoogle Scholar
  41. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109:E2579–E2586PubMedPubMedCentralCrossRefGoogle Scholar
  42. Geisinger JM, Turan S, Hernandez S, Spector LP, Calos MP (2016) In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining. Nucleic Acids Res. doi:10.1093/nar/gkv1542 PubMedPubMedCentralGoogle Scholar
  43. Gergerich RC, Welliver RA, Gettys S, Osterbauer NK, Kamenidou S, Martin RR, Golino DA, Eastwell K, Fuchs M, Vidalakis G et al (2015) Safeguarding fruit crops in the age of agricultural globalization. Plant Dis 99:176–187CrossRefGoogle Scholar
  44. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661PubMedPubMedCentralCrossRefGoogle Scholar
  46. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  47. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hafez M, Hausner G (2012) Homing endonucleases: DNA scissors on a mission. Genome 55:553–569PubMedCrossRefGoogle Scholar
  49. Harper G, Hull R, Lockhart B, Olszewski N (2002) Viral sequences integrated into plant genomes. Annu Rev Phytopathol 40:119–136PubMedCrossRefGoogle Scholar
  50. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33:510–517PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hnatuszko-Konka K, Kowalczyk T, Gerszberg A, Wiktorek-Smagug A, Kononowicz A (2014) Phaseolus vulgaris—recalcitrant potential. Biotechnol Adv 32:1205–1215PubMedCrossRefGoogle Scholar
  52. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci 110:15644–15649PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hou H, Atlihan N, Lu ZX (2014) New biotechnology enhances the application of cisgenesis in plant breeding. Front Plant Sci 5:389PubMedPubMedCentralGoogle Scholar
  54. Houten JG, Quak F, van der Meer FA (1968) Heat treatment and meristem culture for the production of virus-free plant material. Neth J Plant Pathol 74:17–24CrossRefGoogle Scholar
  55. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L, Li F, Luo B, Alvarez-Carbonell D, Garcia-Mesa Y, Karn J et al (2014) RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci 111:11461–11466PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637PubMedCrossRefGoogle Scholar
  58. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254PubMedCrossRefGoogle Scholar
  60. Jain M (2015) Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci 6:375PubMedPubMedCentralCrossRefGoogle Scholar
  61. Ji X, Zhang H, Zhang Y, Wang Y, Gao C (2015) Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat Plants 1:15144PubMedCrossRefGoogle Scholar
  62. Jia H, Wang N (2014a) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9:e93806PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jia H, Wang N (2014b) Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep 33:1993–2001PubMedCrossRefGoogle Scholar
  64. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13:1465–1469PubMedPubMedCentralCrossRefGoogle Scholar
  66. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA—guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  67. Kabadi AM, Gersbach CA (2014) Engineering synthetic TALE and CRISPR/Cas9 transcription factors for regulating gene expression. Methods 69:188–197PubMedPubMedCentralCrossRefGoogle Scholar
  68. Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, Banaei-Moghaddam AM, Fuchs J, Schubert V, Koch K et al (2015) Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci 112:11211–11216PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, Maehr R (2015) Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12:401–403PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kimura Y, Hisano Y, Kawahara A, Higashijima S (2014) Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering. Sci Rep 4:6545PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh JRJ et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Keith Joung J (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495PubMedCrossRefGoogle Scholar
  74. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MDC, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32:267–273PubMedCrossRefGoogle Scholar
  75. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588PubMedCrossRefGoogle Scholar
  76. Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R, Myacheva K, Zwart W, Elkon R, Agami R (2016) Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol 34:192–198PubMedCrossRefGoogle Scholar
  77. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kumar V, Jain M (2015) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57PubMedCrossRefGoogle Scholar
  79. Lee CM, Cradick TJ, Bao G (2016) The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther J Am Soc Gene Ther 24:645–654Google Scholar
  80. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372PubMedCrossRefGoogle Scholar
  81. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691PubMedPubMedCentralCrossRefGoogle Scholar
  82. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genom 41:63–68CrossRefGoogle Scholar
  83. Lin PC, Corn JE (2015) Co-opting CRISPR to deliver functional RNAs. Nat Methods 12:613–614PubMedCrossRefGoogle Scholar
  84. Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66PubMedCrossRefGoogle Scholar
  85. Liu X, Hao L, Li D, Zhu L, Hu S (2015) Long non-coding RNAs and their biological roles in plants. Genom Proteom Bioinform 13:137–147CrossRefGoogle Scholar
  86. Lowder L, Zhang Y, Baltes N, Paul J, Tang X, Zheng X, Voytas D, Hsieh TF, Zhang D, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Phys 169:971–985CrossRefGoogle Scholar
  87. Lozano-Juste J, Cutler SR (2014) Plant genome engineering in full bloom. Trends Plant Sci 19:284–287PubMedCrossRefGoogle Scholar
  88. Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y et al (2015) A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8:1274–1284PubMedCrossRefGoogle Scholar
  89. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mahfouz MM, Piatek A, Stewart CN (2014) Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Plant Biotechnol J 12:1006–1014PubMedCrossRefGoogle Scholar
  91. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838PubMedPubMedCentralCrossRefGoogle Scholar
  92. Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol 33:538–542PubMedPubMedCentralCrossRefGoogle Scholar
  93. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182PubMedCrossRefGoogle Scholar
  95. Nagamangala Kanchiswamy C, Sargent DJ, Velasco R, Maffei ME, Malnoy M (2015) Looking forward to genetically edited fruit crops. Trends Biotechnol 33:62–64PubMedCrossRefGoogle Scholar
  96. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693PubMedCrossRefGoogle Scholar
  97. Nelles DA, Fang MY, Aigner S, Yeo GW (2015) Applications of Cas9 as an RNA-programmed RNA-binding protein. BioEssays 37:732–739PubMedCrossRefGoogle Scholar
  98. Nelles DA, Fang MY, O’Connell MR, Xu JL, Markmiller SJ, Doudna JA, and Yeo GW (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496PubMedCrossRefGoogle Scholar
  99. Nuñez JK, Harrington LB, Kranzusch PJ, Engelman AN, Doudna JA (2015) Foreign DNA capture during CRISPR-Cas adaptive immunity. Nature 527:535–538PubMedPubMedCentralCrossRefGoogle Scholar
  100. O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–266PubMedPubMedCentralCrossRefGoogle Scholar
  101. Paszkowski J (2015) Controlled activation of retrotransposition for plant breeding. Curr Opin Biotechnol 32:200–206PubMedCrossRefGoogle Scholar
  102. Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13:578–589PubMedCrossRefGoogle Scholar
  103. Podevin N, Davies HV, Hartung F, Nogué F, Casacuberta JM (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 31:375–383PubMedCrossRefGoogle Scholar
  104. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763PubMedCrossRefGoogle Scholar
  105. Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci 112:6164–6169PubMedPubMedCentralCrossRefGoogle Scholar
  106. Puchta H (2016) Using CRISPR/Cas in three dimensions: towards synthetic plant genomes, transcriptomes and epigenomes. Plant J. doi:10.1111/tpj.13100 (in press)
  107. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183PubMedPubMedCentralCrossRefGoogle Scholar
  108. Raitskin O, Patron NJ (2016) Multi-gene engineering in plants with RNA-guided Cas9 nuclease. Curr Opin Biotechnol 37:69–75PubMedCrossRefGoogle Scholar
  109. Ramanan V, Shlomai A, Cox DBT, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN (2015) CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 5:10833PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ran FA, Cong L, Yan WX, Scott DA, Gootenburg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ratz M, Testa I, Hell SW, Jakobs S (2015) CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells. Sci Rep 5:9592PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rice JC, Allis CD (2001) Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr Opin Cell Biol 13:263–273PubMedCrossRefGoogle Scholar
  114. Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, Liu Z, Mu Y, Yang S, Ouyang H et al (2015) Highly efficient CRISPR/Cas9-mediated transgene knock-in at the H11 locus in pigs. Sci Rep 5:14253PubMedPubMedCentralCrossRefGoogle Scholar
  115. Schaeffer SM, Nakata PA (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240:130–142PubMedCrossRefGoogle Scholar
  116. Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150PubMedCrossRefGoogle Scholar
  118. Schmidt T, Schmid-Burgk JL, Hornung V (2015) Synthesis of an arrayed sgRNA library targeting the human genome. Sci Rep 5:14987PubMedPubMedCentralCrossRefGoogle Scholar
  119. Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root DE, Doench JG et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87PubMedCrossRefGoogle Scholar
  121. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedCrossRefGoogle Scholar
  122. Shechner DM, Hacisuleyman E, Younger ST, Rinn JL (2015) Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 12:664–670PubMedPubMedCentralCrossRefGoogle Scholar
  123. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88PubMedCrossRefGoogle Scholar
  124. Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18:148–153PubMedCrossRefGoogle Scholar
  125. Song J, Angel A, Howard M, Dean C (2012) Vernalization—a cold-induced epigenetic switch. J Cell Sci 125:3723–3731PubMedCrossRefGoogle Scholar
  126. Sprink T, Metje J, Hartung F (2015) Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Curr Opin Biotechnol 32:47–53PubMedCrossRefGoogle Scholar
  127. Sugano SS, Shirakawa M, Takagi J, Matsuda Y, Shimada T, Hara-Nishimura I, Kohchi T (2014) CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 55:475–481PubMedCrossRefGoogle Scholar
  128. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945PubMedPubMedCentralCrossRefGoogle Scholar
  129. Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Sur M, Zhang F (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33:102–106PubMedCrossRefGoogle Scholar
  130. Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M et al (2008) Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J 54:335–347PubMedCrossRefGoogle Scholar
  131. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445PubMedPubMedCentralCrossRefGoogle Scholar
  132. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576PubMedPubMedCentralCrossRefGoogle Scholar
  133. Turck F, Coupland G (2014) Natural variation in epigenetic gene regulation and its effects on plant developmental traits. Evolution 68:620–631PubMedCrossRefGoogle Scholar
  134. Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:e1001877PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951PubMedCrossRefGoogle Scholar
  136. Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476PubMedCrossRefGoogle Scholar
  137. Wang G, Zhao N, Berkhout B, Das AT (2016) CRISPR-Cas9 can inhibit HIV-1 replication but NHEJ repair facilitates virus escape. Mol Ther J Am Soc Gene Ther 24:522–526Google Scholar
  138. Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987PubMedCrossRefGoogle Scholar
  139. Weeks DP, Spalding MH, Yang B (2015) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol J 14:483–495PubMedCrossRefGoogle Scholar
  140. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338PubMedCrossRefGoogle Scholar
  141. Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164PubMedCrossRefGoogle Scholar
  142. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, Doudna JA (2015) Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci 112:2984–2989PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S, Yan Z, Li D, Li J (2013) Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 13:659–662PubMedCrossRefGoogle Scholar
  144. Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41:e141PubMedPubMedCentralCrossRefGoogle Scholar
  145. Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, Ma H, Li L, Wei PC, Yang JB (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491PubMedCrossRefGoogle Scholar
  146. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379PubMedPubMedCentralCrossRefGoogle Scholar
  147. Yang L, Güell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu W, Poci J et al (2015) Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350:1101–1104PubMedCrossRefGoogle Scholar
  148. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, Koteliansky V, Sharp PA, Jacks T, Anderson DG (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551–553PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zaidi SS, Mansoor S, Ali Z, Tashkandi M, Mahfouz MM (2016) Engineering plants for Geminivirus resistance with CRISPR/Cas9 system. Trends Plant Sci 21:279–281PubMedCrossRefGoogle Scholar
  150. Zetsche B, Volz SE, Zhang F (2015a) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33:139–142PubMedCrossRefGoogle Scholar
  151. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A et al (2015b) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771PubMedCrossRefGoogle Scholar
  152. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N et al (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807PubMedCrossRefGoogle Scholar
  153. Zhang L, Jia R, Palange NJ, Satheka AC, Togo J, An Y, Humphrey M, Ban L, Ji Y, Jin H et al (2015) Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS ONE 10:e0120396PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhang D, Li Z, and Li JF (2016a) Targeted gene manipulation in plants using the CRISPR/Cas technology. J Genet Genomics. doi:10.1016/j.jgg.2016.03.001 Google Scholar
  155. Zhang B, Yang X, Yang C, Li M, Guo Y (2016b) Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia. Sci Rep 6:20315PubMedPubMedCentralCrossRefGoogle Scholar
  156. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914PubMedPubMedCentralCrossRefGoogle Scholar
  157. Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy. New Phytol 208:298–301PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2016

Authors and Affiliations

  1. 1.Department of Pediatrics, Baylor College of MedicineUSDA/ARS Children’s Nutrition Research CenterHoustonUSA

Personalised recommendations