Advertisement

Plant Cell Reports

, Volume 35, Issue 6, pp 1309–1319 | Cite as

Cyanovirin-N produced in rice endosperm offers effective pre-exposure prophylaxis against HIV-1BaL infection in vitro

  • E. Vamvaka
  • A. Evans
  • K. Ramessar
  • L. R. H. Krumpe
  • R. J. Shattock
  • B. R. O’Keefe
  • P. Christou
  • T. Capell
Original Article

Abstract

Key message

Cyanovirin-N produced in rice endosperm provides efficient pre-exposure prophylaxis against HIV-1 BaL infection in vitro.

Abstract

Cyanovirin-N (CV-N) is a lectin with potent antiviral activity that has been proposed as a component of microbicides for the prevention of infection with Human immunodeficiency virus (HIV). The production of protein-based microbicide components requires a platform that is sufficiently economical and scalable to meet the demands of the large at-risk population, particularly in resource poor developing countries. We, therefore, expressed CV-N in rice endosperm, because the dried seed is ideal for storage and transport and crude extracts could be prepared locally and used as a microbicide component without further purification. We found that crude extracts from rice seeds expressing up to 10 µg CV-N per gram dry seed weight showed dose-dependent gp120 binding activity, confirming that the protein was soluble, correctly folded and active. The recombinant lectin (OSCV-N) reduced the infectivity of HIV-1BaL (an R5 virus strain representing the majority of transmitted infections) by ~90 % but showed only weak neutralization activity against HIV-1RF (representative of X4 virus, rarely associated with transmission), suggesting it would be highly effective for pre-exposure prophylaxis against the vast majority of transmitted strains. Crude extracts expressing OSCV-N showed no toxicity towards human cells at working dilutions indicating that microbicide components produced in rice endosperm are safe for direct application as topical microbicides in humans.

Keywords

Cyanovirin-N Rice crude extract Endosperm Anti-HIV Microbicide 

Notes

Acknowledgments

The authors are grateful to Dr. Maite Sabalza Gallués for cloning the CV-N gene in the pRP5 plasmid and Ms. Jennifer Wilson for technical assistance with live-virus anti-HIV assays. In addition, the authors would like to acknowledge funding from the Ministerio de Ciencia e Innovación, Spain (BIO2012-35359), the Center CONSOLIDER on Agrigenomics funded by MICINN, Spain, and COST Action FA0804 (Molecular farming: plants as a production platform for high value proteins). This project was funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN26120080001E, and supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Alexandre KB, Gray ES, Mufhandu H, McMahon JB, Chakauya E, O’Keefe BR, Chikwamba R, Morris L (2012) The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4(+) cells. Virology 423:175–186CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alexandre KB, Moore PL, Nonyane M, Gray ES, Ranchobe N, Chakauya E, McMahon JB, O’Keefe BR, Chikwamba R, Morris L (2013) Mechanisms of HIV-1 subtype C resistance to GRFT, CV-N and SVN. Virology 446:66–76CrossRefPubMedPubMedCentralGoogle Scholar
  3. Balzarini J (2006) Inhibition of HIV entry by carbohydrate-binding proteins. Antiviral Res 71:237–247CrossRefPubMedGoogle Scholar
  4. Bobardt MD, Armand-Ugón M, Clotet I, Zhang Z, David G, Este JA, Gallay PA (2004) Effect of polyanion-resistance on HIV-1 infection. Virology 325:389–398CrossRefPubMedGoogle Scholar
  5. Botos I, Wlodawer A (2005) Proteins that bind high-mannose sugars of the HIV envelope. Prog Biophys Mol Biol 88:233–282CrossRefPubMedGoogle Scholar
  6. Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM, Currens MJ, Cardellina JH, Buckheit RW, Nara PL, Pannell LK, Sowder RC, Henderson LE (1997) Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 41:1521–1530PubMedPubMedCentralGoogle Scholar
  7. Buffa V, Stieh D, Mamhood N, Hu Q, Fletcher P, Shattock RJ (2009) Cyanovirin-N potently inhibits human immunodeficiency virus type 1 infection in cellular and cervical explant models. J Gen Virol 90:234–243CrossRefPubMedGoogle Scholar
  8. Carlson JM, Schaefer M, Monaco DC, Batorsky R, Claiborne DT, Prince J, Deymier MJ, Ende ZS, Klatt NR, DeZiel CE, Lin TH, Peng J, Seese AM, Shapiro R, Frater J, Ndung’u T, Tang J, Goepfert P, Gilmour J, Price MA, Kilembe W, Heckerman D, Goulder PJ, Allen TM, Allen S, Hunter E (2014) HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Science 345:1254031CrossRefPubMedPubMedCentralGoogle Scholar
  9. Christou P, Ford TL, Kofron M (1991) Genotype-independent stable transformation of rice (Oryza sativa) plants. Biotechnology 9:957–962CrossRefGoogle Scholar
  10. Colgan R, Atkinson CJ, Paul M, Hassan S, Drake PMW, Sexton AL, Santa-Cruz S, James D, Hamp K, Gutteridge C, Ma JK (2010) Optimisation of contained Nicotiana tabacum cultivation for the production of recombinant protein pharmaceuticals. Transgenic Res 19:241–256CrossRefPubMedGoogle Scholar
  11. Colleluori DM, Tien D, Kang F, Pagliei T, Kuss R, McCormick T, Watson K, McFadden K, Chaiken I, Buckheit RW, Romano JW (2005) Expression, purification, and characterization of recombinant cyanovirin-N for vaginal anti-HIV microbicide development. Protein Expr Purif 39:229–236CrossRefPubMedGoogle Scholar
  12. Connor RI, Mohri H, Cao Y, Ho DD (1993) Increased viral burden and cytopathicity correlate temporally with CD4 T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J Virol 67:1772–1777PubMedPubMedCentralGoogle Scholar
  13. Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR (1997) Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 185:621–628CrossRefPubMedPubMedCentralGoogle Scholar
  14. De Hoff PL, Brill LM, Hirsch AM (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genom 282:1–15CrossRefGoogle Scholar
  15. De Mejía EG, Prisecaru VI (2005) Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr 45:425–445CrossRefPubMedGoogle Scholar
  16. Dey B, Lerner DL, Lusso P, Boyd MR, Elder JH, Berger EA (2000) Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J Virol 74:4562–4569CrossRefPubMedPubMedCentralGoogle Scholar
  17. Drake PM, Barbi T, Sexton A, McGowan E, Stadlmann J, Navarre C, Paul MJ, Ma JK (2009) Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. FASEB J 23:3581–3589CrossRefPubMedGoogle Scholar
  18. Drake PM, de Moraes Madeira L, Szeto TH, Ma JK (2013) Transformation of Althaea officinalis L. by Agrobacterium rhizogenes for the production of transgenic roots expressing the anti-HIV microbicide cyanovirin-N. Transgenic Res 22:1225–1229CrossRefPubMedGoogle Scholar
  19. Este JA, Schols D, De Vreese K, Van Laethem K, Vandamme AM, Desmyter J, De Clercq E (1997) Development of resistance of human immunodeficiency virus type 1 to dextran sulfate associated with the emergence of specific mutations in the envelope gp120 glycoprotein. Mol Pharmacol 52:98–104PubMedGoogle Scholar
  20. Fischer R, Stöger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158CrossRefPubMedGoogle Scholar
  21. François KO, Balzarini J (2012) Potential of carbohydrate-binding agents as therapeutics against enveloped viruses. Med Res Rev 32:349–387CrossRefPubMedGoogle Scholar
  22. Gao X, Chen W, Guo C, Qian C, Liu G, Ge F, Huang Y, Kitazato K, Wang Y, Xiong S (2010) Soluble cytoplasmic expression, rapid purification, and characterization of cyanovirin-N as a His-SUMO fusion. Appl Microbiol Biotechnol 85:1051–1060CrossRefPubMedGoogle Scholar
  23. Garg AB, Nuttall J, Romano J (2009) The future of HIV microbicides: challenges and opportunities. Antivir Chem Chemother 19:143–150CrossRefPubMedGoogle Scholar
  24. Giomarelli B, Provvedi R, Meacci F, Maggi T, Medaglini D, Pozzi G, Mori T, McMahon JB, Gardella R, Boyd MR (2002) The microbicide cyanovirin-N expressed on the surface of commensal bacterium Streptococcus gordonii captures HIV-1. AIDS 16:1351–1356CrossRefPubMedGoogle Scholar
  25. Goldstein IJ, Poretz RD (1986) Isolation, physicochemical characterization, and carbohydrate binding specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds) The lectins: properties, functions, and applications in biology and medicine. Academic Press, New York, pp 33–248CrossRefGoogle Scholar
  26. Grivel JC, Shattock RJ, Margolis LB (2011) Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med 9(Suppl 1):S6. doi: 10.1186/1479-5876-9-S1-S6 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gulakowski RJ, McMahon JB, Staley PG, Moran RA, Boyd MR (1991) A semiautomated multiparameter approach for anti-HIV drug screening. J Virol Methods 33:87–100CrossRefPubMedGoogle Scholar
  28. Gustafson KR, Sowder RC, Henderson LE, Cardellina JH, McMahon JB, Rajamani U, Pannell LK, Boyd MR (1997) Isolation, primary sequence determination, and disulfide bond structure of cyanovirin-N, an anti-HIV (human immunodeficiency virus) protein from the cyanobacterium Nostoc ellipsosporum. Biochem Biophys Res Commun 238:223–228CrossRefPubMedGoogle Scholar
  29. Haase AT (2011) Early events in sexual transmission of HIV and SIV and opportunities for interventions. Annu Rev Med 62:127–139CrossRefPubMedGoogle Scholar
  30. Hladik F, Hope TJ (2009) HIV infection of the genital mucosa in women. Curr HIV/AIDS Rep 6:20–28CrossRefPubMedGoogle Scholar
  31. Hu Q, Mahmood N, Shattock RJ (2007) High-mannose-specific deglycosylation of HIV-1 gp120 induced by resistance to cyanovirin-N and the impact on antibody neutralization. Virology 368:145–154CrossRefPubMedPubMedCentralGoogle Scholar
  32. Huang X, Jin W, Griffin GE, Shattock RJ, Hu Q (2011) Removal of two high-mannose N-linked glycans on gp120 renders human immunodeficiency virus 1 largely resistant to the carbohydrate-binding agent griffithsin. J Gen Virol 92:2367–2373CrossRefPubMedGoogle Scholar
  33. Jekle A, Keppler OT, De Clercq E, Schols D, Weinstein M, Goldsmith MA (2003) In vivo evolution of human immunodeficiency virus type 1 toward increased pathogenicity through CXCR4-mediated killing of uninfected CD4 T cells. J Virol 77:5846–5854CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kumar KK, Chandra KL, Sumanthi J, Redd GS, Shelar PC, Reddy B (2012) Biological role of lectins: a review. J Orofac Sci 4:20–25CrossRefGoogle Scholar
  35. Lagenaur LA, Sanders-Beer BE, Brichacek B, Pal R, Liu X, Liu Y, Yu R, Venzon D, Lee PP, Hamer DH (2011) Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus. Mucosal Immunol 4:648–657CrossRefPubMedPubMedCentralGoogle Scholar
  36. Liu X, Lagenaur LA, Simpson DA, Essenmacher KP, Frazier-Parker CL, Liu Y, Tsai D, Rao SS, Hamer DH, Parks TP, Lee PP, Xu Q (2006) Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N. Antimicrob Agents Chemother 50:3250–3259CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ma JK, Drake PM, Christou P (2003) Genetic modification: the production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805CrossRefPubMedGoogle Scholar
  38. Madan RP, Mesquita PM, Cheshenko N, Jing B, Shende V, Guzman E, Heald T, Keller MJ, Regen SL, Shattock RJ, Herold BC (2007) Molecular umbrellas: a novel class of candidate topical microbicides to prevent human immunodeficiency virus and herpes simplex virus infections. J Virol 81:7636–7646CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mesquita PM, Wilson SS, Manlow P, Fischetti L, Keller MJ, Herold BC, Shattock RJ (2008) Candidate microbicide PPCM blocks human immunodeficiency virus type 1 infection in cell and tissue cultures and prevents genital herpes in a murine model. J Virol 82:6576–6584CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mori T, Shoemaker RH, Gulakowski RJ, Krepps BL, McMahon JB, Gustafson KR, Pannell LK, Boyd MR (1997) Analysis of sequence requirements for biological activity of cyanovirin-N, a potent HIV (human immunodeficiency virus)-inactivating protein. Biochem Biophys Res Commun 238:218–222CrossRefPubMedGoogle Scholar
  41. Mori T, Gustafson KR, Pannell LK, Shoemaker RH, Wu L, McMahon JB, Boyd MR (1998) Recombinant production of cyanovirin-N, a potent human immunodeficiency virus-inactivating protein derived from a cultured cyanobacterium. Protein Expr Purif 12:151–158CrossRefPubMedGoogle Scholar
  42. Mori T, Barrientos LG, Han Z, Gronenborn AM, Turpin JA, Boyd MR (2002) Functional homologs of cyanovirin-N amenable to mass production in prokaryotic and eukaryotic hosts. Protein Expr Purif 26:42–49CrossRefPubMedGoogle Scholar
  43. Muntz K (1998) Deposition of storage proteins. Plant Mol Biol 38:77–99CrossRefPubMedGoogle Scholar
  44. Murad A, Cunha N, Lacorte C, Coehlo M, Vianna G, Rech E (2014) Expression, purification and analysis of the anti-HIV Cyanovirin-N produced in transgenic soybeans seeds. BMC Proc 8:105CrossRefGoogle Scholar
  45. Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J, Perez Conesa D, Ros G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767CrossRefPubMedPubMedCentralGoogle Scholar
  46. O’Keefe BR, Murad AM, Vianna GR, Ramessar K, Saucedo CJ, Wilson, J, Buckheit KW, da Cunha NB, Araújo AC, Lacorte CC, Madeira L, McMahon JB, Rech EL (2015) Engineering soya bean seeds as a scalable platform to produce cyanovirin-N, a non-ARV microbicide against HIV. Plant Biotechnol J 1–9 [pub ahead of print]Google Scholar
  47. Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD (1998) Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. New Engl J Med 338:853–860CrossRefPubMedGoogle Scholar
  48. Parrish NF, Gao F, Li H, Giorgi EE, Barbian HJ, Parrish EH, Zajic L, Iyer SS, Decker JM, Kumar A, Hora B, Berg A, Cai F, Hopper J, Denny TN, Ding H, Ochsenbauer C, Kappes JC, Galimidi RP, West AP Jr, Bjorkman PJ, Wilen CB, Doms RW, O’Brien M, Bhardwaj N, Borrow P, Haynes BF, Muldoon M, Theiler JP, Korber B, Shaw GM, Hahn BH (2013) Phenotypic properties of transmitted founder HIV-1. Proc Natl Acad Sci USA 110:6626–6633CrossRefPubMedPubMedCentralGoogle Scholar
  49. Permanyer M, Ballana E, Esté JA (2010) Endocytosis of HIV: anything goes. Trends Microbiol 18:543–551CrossRefPubMedGoogle Scholar
  50. Platt EJ, Bilska M, Kozak SL, Kabat D, Montefiori DC (2009) Evidence that ecotropic murine leukemia virus contamination in TZM-bl cells does not affect the outcome of neutralizing antibody assays with human immunodeficiency virus type 1. J Virol 83:8289–8292CrossRefPubMedPubMedCentralGoogle Scholar
  51. Portsmouth SD, Scott CJ (2007) The renaissance of fixed dose combinations: combivir. Ther Clin Risk Manag 3:579–583PubMedPubMedCentralGoogle Scholar
  52. Ramessar K, Sabalza M, Miralpeix B, Capell T, Christou P (2010) Can microbicides turn the tide against HIV? Curr Pharm Des 16:468–485CrossRefPubMedGoogle Scholar
  53. Sabalza M, Vamvaka E, Christou P, Capell T (2013) Seeds as a production system for molecular pharming applications: status and prospects. Curr Pharm Des 19:5543–5552CrossRefPubMedGoogle Scholar
  54. Sacchettini JC, Baum LG, Brewer CF (2001) Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry 40:3009–3015CrossRefPubMedGoogle Scholar
  55. Schuitemaker H, Koot M, Kootstra NA, Dercksen MW, de Goede RE, van Steenwijk RP, Lange JM, Schattenkerk JK, Miedema F, Tersmette M (1992) Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol 66:1354–1360PubMedPubMedCentralGoogle Scholar
  56. Sexton A, Drake PM, Mahmood N, Harman SJ, Shattock RJ, Ma JK (2006) Transgenic plant production of Cyanovirin-N, an HIV microbicide. FASEB J 20:356–358PubMedGoogle Scholar
  57. Sexton A, Harman S, Shattock RJ, Ma JK (2009) Design, expression, and characterization of a multivalent, combination HIV microbicide. FASEB J 23:3590–3600CrossRefPubMedGoogle Scholar
  58. Shattock RJ, Moore JP (2003) Inhibiting sexual transmission of HIV-1 infection. Nat Rev Microbiol 1:25–34CrossRefPubMedGoogle Scholar
  59. Shattock RJ, Rosenberg Z (2012) Microbicides: topical prevention against HIV. Cold Spring Harb Perspect Med 2:a007385CrossRefPubMedPubMedCentralGoogle Scholar
  60. Shenoy SR, O’Keefe BR, Bolmstedt AJ, Cartner LK, Boyd MR (2001) Selective interactions of the human immunodeficiency virus-inactivating protein cyanovirin-N with high-mannose oligosaccharides on gp120 and other glycoproteins. J Pharmacol Exp Ther 297:704–710PubMedGoogle Scholar
  61. Shenoy SR, Barrientos LG, Ratner DM, O’Keefe BR, Seeberger PH, Gronenborn AM, Boyd MR (2002) Multisite and multivalent binding between cyanovirin-N and branched oligomannosides: calorimetric and NMR characterization. Chem Biol 9:1109–1118CrossRefPubMedGoogle Scholar
  62. Stöger E, Fischer R, Moloney M, Ma JK (2014) Plant molecular pharming for the treatment of chronic and infectious diseases. Annu Rev Plant Biol 65:743–768CrossRefPubMedGoogle Scholar
  63. Sudhakar D, Duc LT, Bong BB, Tinjuangjun P, Maqbool SB, Valdez M, Jefferson R, Christou P (1998) An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device. Transgenic Res 7:289–294CrossRefGoogle Scholar
  64. Taha TE, Hoover DR, Dallabetta GA, Kumwenda NI, Mtimavalye LA, Yang LP, Liomba GN, Broadhead RL, Chiphangwi JD, Miotti PG (1998) Bacterial vaginosis and disturbances of vaginal flora: association with increased acquisition of HIV. AIDS 12:1699–1706CrossRefPubMedGoogle Scholar
  65. Takaiwa F, Hirose S, Takagi H, Yang L, Wakasa Y (2009) Deposition of a recombinant peptide in ER-derived protein bodies by retention with cysteine-rich prolamins in transgenic rice seed. Planta 229:1147–1158CrossRefPubMedGoogle Scholar
  66. Valdez M, Cabrera-Ponce JL, Sudhakar D, Herrera-Estrella L, Christou P (1998) Transgenic central American, west African and Asian elite rice varieties resulting from particle bombardment of foreign DNA into mature seed-derived explants utilizing three different bombardment devices. Ann Bot 82:795–801CrossRefGoogle Scholar
  67. Vamvaka E, Arcalis E, Ramessar K, Evans A, O’Keefe BR, Shattock RJ, Medina V, Stöger E, Christou P, Capell T (2016a) Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV. Plant Biotechnol J. doi: 10.1111/pbi.12507 Google Scholar
  68. Vamvaka E, Twyman RM, Murad AM, Melnik S, Teh AYH, Arcalis E, Altmann F, Stöger E, Rech E, Ma JKC, Christou P, Capell T (2016b) Rice endosperm produces an underglycosylated and potent form of the HIV-neutralizing monoclonal antibody 2G12. Plant Biotechnol J 14:97–108CrossRefPubMedGoogle Scholar
  69. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46:1896–1905CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wei X, Hunt G, Abdool Karim SS, Naranbhai V, Sibeko S, Abdool Karim Q, Li JF, Kashuba AD, Werner L, Passmore JA, Morris L, Heneine W, Johnson JA (2014) Sensitive tenofovir resistance screening of HIV-1 from the genital and blood compartments of women with breakthrough infections in the CAPRISA 004 tenofovir gel trial. J Infect Dis 209:1916–1920CrossRefPubMedPubMedCentralGoogle Scholar
  71. Weis WI, Drickamer K (1996) Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 65:441–473CrossRefPubMedGoogle Scholar
  72. Xiong S, Fan J, Kitazato K (2010) The antiviral protein cyanovirin-N: the current state of its production and applications. Appl Microbiol Biotechnol 86:805–812CrossRefPubMedGoogle Scholar
  73. Yamagata H, Tanaka K (1986) The site of synthesis and accumulation of rice storage proteins. Plant Cell Physiol 27:135–145Google Scholar
  74. Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD (1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261:1179–1181CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • E. Vamvaka
    • 1
  • A. Evans
    • 2
  • K. Ramessar
    • 3
  • L. R. H. Krumpe
    • 3
    • 4
  • R. J. Shattock
    • 2
  • B. R. O’Keefe
    • 3
    • 5
  • P. Christou
    • 1
    • 6
  • T. Capell
    • 1
  1. 1.Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA)University of Lleida-Agrotecnio CenterLleidaSpain
  2. 2.Department of MedicineImperial College LondonLondonUK
  3. 3.Molecular Targets Laboratory, Center for Cancer ResearchNational Cancer Institute, NIHFrederickUSA
  4. 4.Leidos Biomedical Research, Inc., Frederick National LaboratoryFrederickUSA
  5. 5.Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and DiagnosisNational Cancer Institute, NIHFrederickUSA
  6. 6.Catalan Institute for Research and Advanced Studies (ICREA)BarcelonaSpain

Personalised recommendations