Plant Cell Reports

, Volume 35, Issue 6, pp 1213–1220 | Cite as

Arabidopsis atypical kinase ABC1K1 is involved in red light-mediated development

  • Mei Yang
  • Hao Huang
  • Caiguo Zhang
  • Zhi Wang
  • Yan’e Su
  • Pan Zhu
  • Yan GuoEmail author
  • Xing Wang DengEmail author
Original Article


Key message

ABC1K1 functions as a novel negative regulator downstream of phyB and HY5 in red light-mediated Arabidopsis development.


Light is a key environmental factor for plant morphogenesis. To understand the role of ACTIVITY OF BC1 COMPLEX KINASE (ABC1K) family members in light-mediated Arabidopsis development, we examined the phenotype of abc1k mutants under various light conditions. We show that abc1k1 mutants display significantly short hypocotyls specifically under continuous red light and this effect is more apparent under higher red light fluence rates. The expression of PHYTOCHROME-INTERACTING FACTORs (PIFs), transcription factors in red light signaling, is repressed in abc1k1 mutants under continuous red light. The expression pattern of ABC1K1 is independent of light conditions. Furthermore, genetic analysis indicates that abc1k1 almost completely suppresses the long hypocotyl phenotype of phyB and hy5. However, the mutation of ABC1K3, one homolog of ABC1K1, reverses the inhibition of hypocotyl elongation in phyB and hy5 by abc1k1. Together, our research describes novel characteristics for ABC1K1 in seedling stage and defines it as a novel negative component in red light-mediated Arabidopsis development.


ABC1 kinase Hypocotyl phyB HY5 Light signaling Arabidopsis 



We acknowledge the reading and comment of this manuscript by Dr. Dongqing Xu. This work was supported by grants from the National Basic Research Program of China (973 Program: 2012CB910900), the National Natural Science Foundation of China (31330048), and a Grant from NIH (GM-47850), and Peking-Tsinghua Center for Life Sciences (to X.W.D), and State Key Laboratory of Protein and Plant Gene Research.

Compliance with ethical standards

Conflict of interest

No conflict of interest declared.

Supplementary material

299_2016_1953_MOESM1_ESM.pdf (272 kb)
Supplementary material 1 (PDF 271 kb)
299_2016_1953_MOESM2_ESM.pdf (28 kb)
Supplementary material 2 (PDF 28 kb)


  1. Bousquet I, Dujardin G, Slonimski PP (1991) ABC1, a novel yeast nuclear gene has a dual function in mitochondria: it suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc 1 complex. EMBO J 10:2023–2031PubMedPubMedCentralGoogle Scholar
  2. Boyd JS, Mittelmeier TM, Lamb MR, Dieckmann CL (2011) Thioredoxin-family protein EYE2 and Ser/Thr kinase EYE3 play interdependent roles in eyespot assembly. Mol Biol Cell 22:1421–1429CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brasseur G, Tron G, Dujardin G, Slonimski PP, Brivet-Chevillotte P (1997) The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain. Eur J Biochem 246:103–111CrossRefPubMedGoogle Scholar
  4. Brzezowski P, Richter AS, Grimm B (2015) Regulation and function of tetrapyrrole biosynthesis in plants and algae. Biochim Biophys Acta 1847:968–985CrossRefPubMedGoogle Scholar
  5. Casal JJ, Fankhauser C, Coupland G, Blazquez MA (2004) Signalling for developmental plasticity. Trends Plant Sci 9:309–314CrossRefPubMedGoogle Scholar
  6. Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen F, Li B, Li G, Charron JB, Dai M, Shi X, Deng XW (2014) Arabidopsis Phytochrome A directly targets numerous promoters for individualized modulation of genes in a wide range of pathways. Plant Cell 26:1949–1966CrossRefPubMedPubMedCentralGoogle Scholar
  8. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743CrossRefPubMedGoogle Scholar
  9. Datta S, Johansson H, Hettiarachchi C, Irigoyen ML, Desai M, Rubio V, Holm M (2008) LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-box protein involved in light-dependent development and gene expression, undergoes COP1-mediated ubiquitination. Plant Cell 20:2324–2338CrossRefPubMedPubMedCentralGoogle Scholar
  10. Goyal A, Szarzynska B, Fankhauser C (2013) Phototropism: at the crossroads of light-signaling pathways. Trends Plant Sci 18:393–401CrossRefPubMedGoogle Scholar
  11. Huang X, Ouyang X, Deng XW (2014) Beyond repression of photomorphogenesis: role switching of COP/DET/FUS in light signaling. Curr Opin Plant Biol 21:96–103CrossRefPubMedGoogle Scholar
  12. Huang H, Yang M, Su Y, Qu L, Deng XW (2015) Arabidopsis atypical kinases ABC1K1 and ABC1K3 act oppositely to cope with photodamage under red light. Mol Plant 8:1122–1124CrossRefPubMedGoogle Scholar
  13. Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail PH (2004) Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 305:1937–1941CrossRefPubMedGoogle Scholar
  14. Kreimer G (2009) The green algal eyespot apparatus: a primordial visual system and more? Curr Genet 55:19–43CrossRefPubMedGoogle Scholar
  15. Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 12:571–577CrossRefGoogle Scholar
  16. Lau OS, Deng XW (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–593CrossRefPubMedGoogle Scholar
  17. Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng XW (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749CrossRefPubMedPubMedCentralGoogle Scholar
  18. Leivar P, Monte E (2014) PIFs: systems integrators in plant development. Plant Cell 26:56–78CrossRefPubMedPubMedCentralGoogle Scholar
  19. Liu H, Liu B, Zhao C, Pepper M, Lin C (2011) The action mechanisms of plant cryptochromes. Trends Plant Sci 16:684–691CrossRefPubMedPubMedCentralGoogle Scholar
  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  21. Lundquist PK, Davis JI, van Wijk KJ (2012a) ABC1 K atypical kinases in plants: filling the organellar kinase void. Trends Plant Sci 17:546–555CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ (2012b) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158:1172–1192CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lundquist PK, Poliakov A, Giacomelli L, Friso G, Appel M, McQuinn RP, Krasnoff SB, Rowland E, Ponnala L, Sun Q, van Wijk KJ (2013) Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway. Plant Cell 25:1818–1839CrossRefPubMedPubMedCentralGoogle Scholar
  24. Martinis J, Glauser G, Valimareanu S, Kessler F (2013) A chloroplast ABC1-like kinase regulates vitamin E metabolism in Arabidopsis. Plant Physiol 162:652–662CrossRefPubMedPubMedCentralGoogle Scholar
  25. Martinis J, Glauser G, Valimareanu S, Stettler M, Zeeman SC, Yamamoto H, Shikanai T, Kessler F (2014) ABC1K1/PGR6 kinase: a regulatory link between photosynthetic activity and chloroplast metabolism. Plant J 77:269–283CrossRefPubMedGoogle Scholar
  26. McNellis TW, von Arnim AG, Deng XW (1994) Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis. Plant Cell 6:1391–1400CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rötig A (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 82:623–630CrossRefPubMedPubMedCentralGoogle Scholar
  28. Poon WW, Davis DE, Ha HT, Jonassen T, Rather PN, Clarke CF (2000) Identification of Escherichia coli ubiB, a gene required for the first monooxygenase step in ubiquinone biosynthesis. J Bacteriol 182:5139–5146CrossRefPubMedPubMedCentralGoogle Scholar
  29. Reed JW, Nagatani A, Elich TD, Fagan M, Chory J (1994) Phytochrome A and Phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol 104:1139–1149PubMedPubMedCentralGoogle Scholar
  30. Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106CrossRefPubMedGoogle Scholar
  31. Tang W, Wang W, Chen D, Ji Q, Jing Y, Wang H, Lin R (2012) Transposase-derived proteins FHY3/FAR1 interact with PHYTOCHROME-INTERACTING FACTOR1 to regulate chlorophyll biosynthesis by modulating HEMB1 during deetiolation in Arabidopsis. Plant Cell 24:1984–2000CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ulijasz AT, Cornilescu G, Cornilescu CC, Zhang J, Rivera M, Markley JL, Vierstra RD (2010) Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature 463:250–254CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wu D, Hu Q, Yan Z, Chen W, Yan C, Huang X, Zhang J, Yang P, Deng H, Wang J, Deng X, Shi Y (2012) Structural basis of ultraviolet-B perception by UVR8. Nature 484:214–219CrossRefPubMedGoogle Scholar
  34. Yang S, Zeng X, Li T, Liu M, Zhang S, Gao S, Wang Y, Peng C, Li L, Yang C (2012) AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in Arabidopsis. J Exp Bot 63:3959–3973CrossRefPubMedGoogle Scholar
  35. Ytterberg AJ, Peltier JB, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences and School of Life SciencesPeking UniversityBeijingChina
  2. 2.School of Life Sciences and School of MedicineTsinghua UniversityBeijingChina
  3. 3.State Key Laboratory of Plant Physiology and Biochemistry, College of Biological SciencesChina Agricultural UniversityBeijingChina
  4. 4.Department of Botany, College of Life SciencesHunan Normal UniversityChangshaChina

Personalised recommendations