Plant Cell Reports

, Volume 35, Issue 2, pp 369–384 | Cite as

Level of tissue differentiation influences the activation of a heat-inducible flower-specific system for genetic containment in poplar (Populus tremula L.)

  • Hans Hoenicka
  • Denise Lehnhardt
  • Suneetha Nunna
  • Richard Reinhardt
  • Albert Jeltsch
  • Valentina Briones
  • Matthias Fladung
Original Article


Key message

Differentiation level but not transgene copy number influenced activation of a gene containment system in poplar. Heat treatments promoted CRE gene body methylation. The flower-specific transgene deletion was confirmed.


Gene flow between genetic modified trees and their wild relatives is still motive of concern. Therefore, approaches for gene containment are required. In this study, we designed a novel strategy for achieving an inducible and flower-specific transgene removal from poplar trees but still expressing the transgene in the plant body. Hence, pollen carrying transgenes could be used for breeding purposes under controlled conditions in a first phase, and in the second phase genetic modified poplars developing transgene-free pollen grains could be released. This approach is based on the recombination systems CRE/loxP and FLP/frt. Both gene constructs contained a heat-inducible CRE/loxP-based spacer sequence for in vivo assembling of the flower-specific FLP/frt system. This allowed inducible activation of gene containment. The FLP/frt system was under the regulation of a flower-specific promoter, either CGPDHC or PTD. Our results confirmed complete CRE/loxP-based in vivo assembling of the flower-specific transgene excision system after heat treatment in all cells for up to 30 % of regenerants derived from undifferentiated tissue cultures. Degradation of HSP::CRE/loxP spacer after recombination but also persistence as extrachromosomal DNA circles were detected in sub-lines obtained after heat treatments. Furthermore, heat treatment promoted methylation of the CRE gene body. A lower methylation level was detected at CpG sites in transgenic sub-lines showing complete CRE/loxP recombination and persistence of CRE/loxP spacer, compared to sub-lines with incomplete recombination. However, our results suggest that low methylation might be necessary but not sufficient for recombination. The flower-specific FLP/frt-based transgene deletion was confirmed in 6.3 % of flowers.


Biosafety Populus Recombination Gene flow Heat shock 



Genetic modified


Heat shock promoter


Extrachromosomal DNA


Transfer DNA







This work was supported by the German Ministry of Education and Research (Biosafety Research; project number 0315210C). We thank S. Strauss (Oregon University, USA) for kindly providing the PTD gene promoter, D. Ebbinghaus and A. Schellhorn, for helpful technical assistance in the lab, and the greenhouse staff (M. Hunger, G. Wiemann, R. Ebbinghaus, M. Spauszus) for plant cultivation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

299_2015_1890_MOESM1_ESM.pdf (746 kb)
Supplementary material 1 (PDF 746 kb)


  1. Ahmad A, Zhang Y, Cao XF (2010) Decoding the epigenetic language of plant development. Mol Plant 3:719–728PubMedCentralCrossRefPubMedGoogle Scholar
  2. Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B (2008) QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinform 9:465Google Scholar
  3. Ashwell G (1962) Enzymes of glucoronic and galacturonic acid metabolism in bacteria. Methods Enzymol 5:190–208CrossRefGoogle Scholar
  4. Bastar MT, Luthar Z, Skof S, Bohanec B (2004) Quantitative determination of mosaic GFP gene expression in tobacco. Plant Cell Rep 22:939–944CrossRefPubMedGoogle Scholar
  5. Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K, Weigel D (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249CrossRefPubMedGoogle Scholar
  6. Beltrán J, Jaimes H, Echeverry M, Ladino Y, López D, Duque MC, Chavarriaga P, Tohme J (2009) Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cell Dev Biol Plant 45:48–56CrossRefGoogle Scholar
  7. Broach JR, Hicks JB (1980) Replication and recombination functions associated with the yeast plasmid, 2 mu circle. Cell 21:501–508CrossRefPubMedGoogle Scholar
  8. Broer I (1996) Stress inactivation of foreign genes in transgenic plants. Field Crops Res 45:19–25CrossRefGoogle Scholar
  9. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139PubMedCentralCrossRefPubMedGoogle Scholar
  10. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 13(452):215–219CrossRefGoogle Scholar
  11. Coppoolse ER, de Vroomen MJ, Roelofs D, Smit J, van Gennip F, Hersmus BJM, Nijkamp HJ, van Haaren MJJ (2003) Cre recombinase expression can result in phenotypic aberrations in plants. Plant Mol Biol 51:263–279CrossRefPubMedGoogle Scholar
  12. Cuellar W, Gaudin A, Solorzano D, Casas A, Nopo L, Chudalayandi P, Medrano G, Kreuze Jand Ghislain M (2006) Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 62:71–82CrossRefPubMedGoogle Scholar
  13. Deng W, Luo K, Li Z, Yang Y (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177:43–48CrossRefGoogle Scholar
  14. Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256CrossRefPubMedGoogle Scholar
  15. Fladung M, Ahuja MR (1995) “Sandwich” method for nonradioactive hybridization. Biotechniques 18:800–802Google Scholar
  16. Fladung M, Becker D (2010) Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) using site-specific recombination systems. Plant Biol 12:334–340CrossRefPubMedGoogle Scholar
  17. Fladung M, Polak O (2012) Ac/Ds-transposon activation tagging in poplar: a powerful tool for gene discovery. BMC Genomics 13:61PubMedCentralCrossRefPubMedGoogle Scholar
  18. Fladung M, Muhs HJ, Ahuja MR (1996) Morphological changes observed in transgenic Populus carrying the rolC gene from Agrobacterium rhizogenes. Silvae Genet 45:349–354Google Scholar
  19. Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121CrossRefGoogle Scholar
  20. Fladung M, Schenk TMH, Polak O, Becker D (2010) Elimination of marker genes and targeted integration via FLP/FRT-recombination system from yeast in hybrid aspen (Populus tremula L. × P. tremuloides Michx.). Tree Genes Genomics 6:205–217CrossRefGoogle Scholar
  21. Freeman J, Sparks CA, West J, Shewry PR, Jones HD (2011) Temporal and spatial control of transgene expression using a heat-inducible promoter in transgenic wheat. Plant Biotechnol J 9:788–796CrossRefPubMedGoogle Scholar
  22. Gidoni D, Srivastava V, Carmi N (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev Biol Plant 44:457–467CrossRefGoogle Scholar
  23. Gilbertson L (2003) Cre-lox recombination: creative tools for plant biotechnology. Trends Biotechnol 21:550–555CrossRefPubMedGoogle Scholar
  24. Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R (2008) Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics 9:371PubMedCentralCrossRefPubMedGoogle Scholar
  25. Guilley H, Dudley RK, Jonard G, Balàzs E, Richards KE (1982) Transcription of Cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of transcripts. Cell 30:763–773CrossRefPubMedGoogle Scholar
  26. Hausmann L, Töpfer R (1999) Entwicklung der Plasmid-Vektoren. Vortr Pflanzenzüchtung 45:155–172Google Scholar
  27. Henderson IR, Chan SR, Cao X, Johnson L, Jacobsen SE (2010) Accurate sodium bisulfite sequencing in plants. Epigenetics 5:47–49PubMedCentralCrossRefPubMedGoogle Scholar
  28. Herzog K, Flachowsky H, Deising HB, Hanke MV (2012) Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus × domestica Borkh.). Gene 498:41–49CrossRefPubMedGoogle Scholar
  29. Hinze A, Becker D (2012) Next generation biotechnology: how sophisticated constructs lead to further insights and new approaches towards biotechnology’s demands. iForest 5:131–137CrossRefGoogle Scholar
  30. Hoenicka H, Fladung M (2006) Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20:131–144CrossRefGoogle Scholar
  31. Hoenicka H, Nowitzki O, Debener T, Fladung M (2006) Faster evaluation of induced floral sterility in transgenic early flowering poplar. Silvae Genetica 55:285–291Google Scholar
  32. Hoenicka H, Lautner S, Klingberg A, Koch G, El-Sherif F, Lehnhardt D, Zhang B, Burgert I, Odermatt J, Melzer S, Fromm J, Fladung M (2012) Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.). Planta 235:359–373CrossRefPubMedGoogle Scholar
  33. Hoenicka H, Lehnhardt D, Nilsson O, Hanelt D, Fladung M (2014) Successful crossings with early flowering transgenic poplar: interspecific crossings, but not transgenesis, promoted aberrant phenotypes in offspring. Plant Biotechnol J 12:1066–1074CrossRefPubMedGoogle Scholar
  34. Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci USA 79:3398–3402PubMedCentralCrossRefPubMedGoogle Scholar
  35. Hüsken A, Prescher S, Schiemann J (2010) Evaluating biological containment strategies for pollen-mediated gene flow. Environ Biosaf Res 9:67–73CrossRefGoogle Scholar
  36. Ito H, Gaubert H, Bucher E, Mirouze M, Vaillant I, Paszkowski J (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472:115–119Google Scholar
  37. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol 5:387–405CrossRefGoogle Scholar
  38. Kaufman WL, Kocman I, Agrawal V, Rahn HP, Besser D, Gossen M (2008) Homogeneity and persistence of transgene expression by omitting antibiotic selection in cell line isolation. Nucleic Acids Res 36(17):e111Google Scholar
  39. Khattri A, Nandy S, Srivastava V (2011) Heat-inducible Cre-lox system for marker excision in transgenic rice. J Biosci 36:37–42CrossRefPubMedGoogle Scholar
  40. Köhler C, Wolff P, Spillane C (2012) Epigenetic mechanisms underlying genomic imprinting in plants. Ann Rev Plant Biol 63:331–352CrossRefGoogle Scholar
  41. Kopertekh L, Schiemann J (2012) Elimination of transgenic sequences in plants by Cre gene expression. In: Özden Çiftçi Y (ed) Transgenic plants—advances and limitations. In Tech, Rijeka. doi: 10.5772/32943
  42. Kumar S, Fladung M (2001) Controlling transgene integration in plants. Trends Plant Sci 6:155–159CrossRefPubMedGoogle Scholar
  43. Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602Google Scholar
  44. Lännenpää M, Hassinen M, Ranki A, Hölttä-Vuori M, Lemmetyinen J, Keinonen K, Sopanen T (2005) Prevention of flower development in birch and other plants using a BpFULL1:BARNASE construct. Plant Cell Rep 24:69–78CrossRefPubMedGoogle Scholar
  45. Lemmetyinen J, Keinonen-Mettälä K, Lännenpää M, von Weissenberg K, Sopanen T (1998) Activity of the CaMV 35S promoter in various parts of transgenic early-flowering birch clones. Plant Cell Rep 18:243–248CrossRefGoogle Scholar
  46. Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC (2009) Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol 151:1087–1095PubMedCentralCrossRefPubMedGoogle Scholar
  47. Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536PubMedCentralCrossRefPubMedGoogle Scholar
  48. Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia by use shoot-tip culture. Int Plant Prop Soc Proc 30:421–427Google Scholar
  49. Logie C, Stewart AF (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci USA 92:5940–5944PubMedCentralCrossRefPubMedGoogle Scholar
  50. Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN Jr, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol 5:263–274CrossRefGoogle Scholar
  51. Luo K, Sun M, Deng W, Xu S (2008) Excision of selectable marker gene from transgenic tobacco using the GM-gene-deletor system regulated by a heat-inducible promoter. Biotechnol Lett 30:1295–1302CrossRefPubMedGoogle Scholar
  52. Marinus MG, Morris NR (1973) Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol 114:1143–1150PubMedCentralPubMedGoogle Scholar
  53. McLeod M, Craft S, Broach JR (1986) Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol Cell Biol 6:3357–3367PubMedCentralCrossRefPubMedGoogle Scholar
  54. Meilan R, Brunner AM, Skinner JS, Strauss SH (2001) Modification of flowering in transgenic trees. In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier, Amsterdam, pp 247–256Google Scholar
  55. Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725CrossRefPubMedGoogle Scholar
  56. Mlynárová L, Conner AJ, Nap JP (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 4:445–452CrossRefPubMedGoogle Scholar
  57. Moore I, Samalova M, Kurup S (2006) Transactivated and chemically inducible gene expression in plants. Plant J 45:651–683CrossRefPubMedGoogle Scholar
  58. Moravcíková J, Vaculková E, Bauer M, Libantová J (2008) Feasibility of the seed specific cruciferin C promoter in the self-excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theor Appl Genet 117:1325–1334CrossRefPubMedGoogle Scholar
  59. Nanto K, Ebinuma H (2008) Marker-free site-specific integration plants. Transgenic Res 17:337–344CrossRefPubMedGoogle Scholar
  60. Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129PubMedCentralCrossRefPubMedGoogle Scholar
  61. Qin M, Bayley C, Stockton T, Ow DW (1994) Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci USA 91:1706–1710PubMedCentralCrossRefPubMedGoogle Scholar
  62. Robbins ML, Wang P, Sekhon RS, Chopra S (2009) Gene structure induced epigenetic modifications of pericarp color1 alleles of maize result in tissue-specific mosaicism. PLoS One 4:e8231PubMedCentralCrossRefPubMedGoogle Scholar
  63. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  64. Schöffl F, Raschke E, Nagao RT (1984) The DNA sequence analysis of soybean heat-shock genes and identification of possible regulatory promoter elements. EMBO J 3:2491–2497PubMedCentralPubMedGoogle Scholar
  65. Sekhon RS, Chopra S (2009) Progressive loss of DNA methylation releases epigenetic gene silencing from a tandemly repeated maize Myb gene. Genetics 181:81–91PubMedCentralCrossRefPubMedGoogle Scholar
  66. Sheppard LA, Brunner AM, Krutovskii KV, Rottmann WH, Skinner JS, Vollmer SS, Strauss SH (2000) A DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male floral meristems of the two-whorled, unisexual flowers. Plant Physiol 124:627–640PubMedCentralCrossRefPubMedGoogle Scholar
  67. Siegal ML, Hartl DL (1996) Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144:715–726PubMedCentralPubMedGoogle Scholar
  68. Skinner JS, Meilan R, Ma C, Strauss S (2003) The Populus PTD promoter imparts floral-predominant expression and enables high levels of floral-organ ablation in Populus, Nicotiana and Arabidopsis. Mol Breed 12:119–132CrossRefGoogle Scholar
  69. Srivastava V, Ow DW (2003) Rare instances of Cre-mediated deletion product maintained in transgenic wheat. Plant Mol Biol 52:661–668Google Scholar
  70. Srivastava V, Ow DW (2004) Marker-free site-specific gene integration in plants. Trends Biotechnol 22:627–629CrossRefPubMedGoogle Scholar
  71. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination I. Recombination between loxP sites. J Mol Biol 150:467–486CrossRefPubMedGoogle Scholar
  72. Tittel-Elmer M, Bucher E, Broger L, Mathieu O, Paszkowski J, Vaillant I (2010) Stress-induced activation of heterochromatic transcription I. PLoS Genet 6:e1001175PubMedCentralCrossRefPubMedGoogle Scholar
  73. Van den Elzen P, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5:299–302CrossRefPubMedGoogle Scholar
  74. Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250CrossRefPubMedGoogle Scholar
  75. Vining K, Pomraning KR, Wilhelm LJ, Ma C, Pellegrini M, Di Y, Mockler TC, Freitag M, Strauss SH (2013) Methylome reorganization during in vitro dedifferentiation and regeneration of Populus trichocarpa. BMC Plant Biol 13:92PubMedCentralCrossRefPubMedGoogle Scholar
  76. Walter C, Broer I, Hillemann D, Pühler A (1992) High frequency, heat treatment-induced inactivation of the phosphinothricin resistance gene in transgenic single cell suspension cultures of Medicago sativa. Mol Gen Genet 235:189–196CrossRefPubMedGoogle Scholar
  77. Wang Y, Chen B, Hu Y, Li J, Lin Z (2005) Inducible excision of selectable marker gene from transgenic plants by the Cre-lox site-specific recombination system. Transgenic Res 14:605–614CrossRefPubMedGoogle Scholar
  78. Wollmann H, Berger F (2012) Epigenetic reprogramming during plant reproduction and seed development. Curr Opin Plant Biol 15:63–69CrossRefPubMedGoogle Scholar
  79. Yoo SY, Bomblies K, Yoo SK, Yang JW, Choi MS, Lee JS, Weigel D, Ahn JH (2005) The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene. Planta 221:523–530CrossRefPubMedGoogle Scholar
  80. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201CrossRefPubMedGoogle Scholar
  81. Zhang Y, Rohde C, Tierling S, Stamerjohanns H, Reinhardt R, Walter J, Jeltsch A (2009) DNA methylation analysis by bisulfite conversion, cloning, and sequencing of individual clones. Methods Mol Biol 507:177–187CrossRefPubMedGoogle Scholar
  82. Zhang C, Norris-Caneda KH, Rottmann WH, Gulledge JE, Chang S, Kwan BY, Thomas AM, Mandel LC, Kothera RT, Victor AD, Pearson L, Hinchee MA (2012) Control of pollen-mediated gene flow in transgenic trees. Plant Physiol 159:1319–1334PubMedCentralCrossRefPubMedGoogle Scholar
  83. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Gene 39:61–69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hans Hoenicka
    • 1
  • Denise Lehnhardt
    • 1
  • Suneetha Nunna
    • 2
  • Richard Reinhardt
    • 3
  • Albert Jeltsch
    • 2
  • Valentina Briones
    • 4
  • Matthias Fladung
    • 1
  1. 1.Thünen-Institute of Forest GeneticsGrosshansdorfGermany
  2. 2.Institute of BiochemistryUniversity of StuttgartStuttgartGermany
  3. 3.Max-Planck-Genome-Centre CologneCologneGermany
  4. 4.Universidad Nacional de La PlataLa PlataArgentina

Personalised recommendations