Plant Cell Reports

, Volume 34, Issue 4, pp 631–642 | Cite as

Specific role of phosphatidylglycerol and functional overlaps with other thylakoid lipids in Arabidopsis chloroplast biogenesis

  • Koichi Kobayashi
  • Sho Fujii
  • Mayuko Sato
  • Kiminori Toyooka
  • Hajime Wada
Original Paper


Key message

With phosphate deficiency, the role of phosphatidylglycerol is compensated by increased glycolipid content in thylakoid membrane biogenesis but not photosynthetic electron transport in Arabidopsis chloroplasts.


In plants and cyanobacteria, anionic phosphatidylglycerol (PG) is the only major phospholipid in thylakoid membranes, where neutral galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are predominant. In addition to provide a lipid bilayer matrix, PG plays a specific role in photosynthetic electron transport. Non-phosphorous sulfoquinovosyldiacylglycerol (SQDG) is another anionic lipid in thylakoids; it substitutes for PG under phosphate (Pi) deficiency to maintain proper balance of anionic charge in thylakoid membranes. Although the crucial role of PG in photosynthesis has been deeply analyzed in cyanobacteria, its physiological function in seed plants other than photosynthesis remains unclear. To reveal specific roles of PG and functional overlaps with other thylakoid lipids, we characterized a PG-deficient Arabidopsis mutant (pgp1-2) under Pi-controlled conditions. Under Pi-sufficient conditions, the proportion of PG and other thylakoid lipids was decreased in pgp1-2, which led to severe disruption of thylakoid membrane biogenesis. Under Pi-deficient conditions, the proportion of all glycolipids in the mutant was greatly increased, with that of PG further decreased. In Pi-deficient pgp1-2, thylakoid membranes remarkably developed, which was accompanied by a change in nucleoid morphology and restored expression of nuclear- and plastid-encoded photosynthesis genes. Increase in glycolipid content with Pi deficiency may compensate for the loss of PG in terms of thylakoid membrane biogenesis. Although Pi deficiency increased chlorophyll and photosynthesis protein content in pgp1-2, it critically decreased photochemical activity in PSII. Further deprivation of PG in photosynthesis complexes may abolish the PSII activity in Pi-deficient pgp1-2, which suggests that glycolipids cannot replace PG in photosynthesis.


Chloroplast Galactolipid Phosphatidylglycerol Photosynthesis Sulfoquinovosyldiacylglycerol Thylakoid membrane 

Supplementary material

299_2014_1719_MOESM1_ESM.pptx (1.5 mb)
Supplementary material 1 (PPTX 1549 kb)


  1. Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:10960–10965. doi:10.1073/pnas.181331498 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Babiychuk E, Müller F, Eubel H, Braun H-P, Frentzen M, Kushnir S (2003) Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33:899–909CrossRefPubMedGoogle Scholar
  3. De Santis-MacIossek G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, Rüdiger W, Koop HU, Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489CrossRefPubMedGoogle Scholar
  4. Domonkos I, Malec P, Sallai A, Kovács L, Itoh K, Shen G, Ughy B, Bogos B, Sakurai I, Kis M, Strzalka K, Wada H, Itoh S, Farkas T, Gombos Z (2004) Phosphatidylglycerol is essential for oligomerization of photosystem I reaction center. Plant Physiol 134:1471–1478. doi:10.1104/pp.103.037754.1 CrossRefPubMedCentralPubMedGoogle Scholar
  5. Dörmann P, Hoffmann-Benning S, Balbo I, Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7:1801–1810. doi:10.1105/tpc.7.11.1801 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Droppa M, Horváth G, Hideg E, Farkas T (1995) The role of phospholipids in regulating photosynthetic electron transport activities: treatment of thylakoids with phospholipase C. Photosynth Res 46:287–293. doi:10.1007/BF00020442 CrossRefPubMedGoogle Scholar
  7. Dubertret G, Mirshahi A, Mirshahi M, Gerard-Hirne C, Tremolieres A (1994) Evidence from in vivo manipulations of lipid composition in mutants that the delta 3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii. Eur J Biochem 226:473–482CrossRefPubMedGoogle Scholar
  8. El Maanni A, Dubertret G, Delrieu M-J, Roche O, Trémolières A (1998) Mutants of Chlamydomonas reinhardtii affected in phosphatidylglycerol metabolism and thylakoid biogenesis. Plant Physiol Biochem 36:609–619CrossRefGoogle Scholar
  9. Essigmann B, Güler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95:1950–1955CrossRefPubMedCentralPubMedGoogle Scholar
  10. Fujii S, Kobayashi K, Nakamura Y, Wada H (2014) Inducible knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE 1 reveals roles of galactolipids in organelle differentiation in Arabidopsis cotyledons. Plant Physiol 166:1436–1449. doi:10.1104/pp.114.250050 CrossRefPubMedCentralPubMedGoogle Scholar
  11. Gao J, Ajjawi I, Manoli A, Sawin A, Xu C, Froehlich JE, Last RL, Benning C (2009) FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J 60:832–839. doi:10.1111/j.1365-313X.2009.04001.x CrossRefPubMedGoogle Scholar
  12. Gombos Z, Várkonyi Z, Hagio M, Iwaki M, Kovács L, Masamoto K, Itoh S, Wada H (2002) Phosphatidylglycerol requirement for the function of electron acceptor plastoquinone QB in the photosystem II reaction center. Biochemistry 41:3796–3802CrossRefPubMedGoogle Scholar
  13. Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160CrossRefGoogle Scholar
  14. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342. doi:10.1038/nsmb.1559 CrossRefPubMedGoogle Scholar
  15. Hagio M, Gombos Z, Várkonyi Z, Masamoto K, Sato N, Tsuzuki M, Wada H (2000) Direct evidence for requirement of phosphatidylglycerol in photosystem II of photosynthesis. Plant Physiol 124:795–804CrossRefPubMedCentralPubMedGoogle Scholar
  16. Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43:1456–1464CrossRefPubMedGoogle Scholar
  17. Haselier A, Akbari H, Weth A, Baumgartner W, Frentzen M (2010) Two closely related genes of Arabidopsis encode plastidial cytidinediphosphate diacylglycerol synthases essential for photoautotrophic growth. Plant Physiol 153:1372–1384. doi:10.1104/pp.110.156422 CrossRefPubMedCentralPubMedGoogle Scholar
  18. Hobe S, Prytulla S, Kühlbrandt W, Paulsen H (1994) Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J 13:3423–3429PubMedCentralPubMedGoogle Scholar
  19. Hobe S, Förster R, Klingler J, Paulsen H (1995) N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochemistry 34:10224–10228CrossRefPubMedGoogle Scholar
  20. Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97:8175–8179. doi:10.1073/pnas.100132197 CrossRefPubMedCentralPubMedGoogle Scholar
  21. Jordan BR, Chow W, Baker AJ (1983) The role of phospholipids in the molecular organisation of pea chloroplast membranes. Effect of phospholipid depletion on photosynthetic activities. Biochim Biophys Acta 725:77–86CrossRefGoogle Scholar
  22. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917. doi:10.1038/35082000 CrossRefPubMedGoogle Scholar
  23. Kakizaki T, Matsumura H, Nakayama K, Che F-S, Terauchi R, Inaba T (2009) Coordination of plastid protein import and nuclear gene expression by plastid-to-nucleus retrograde signaling. Plant Physiol 151:1339–1353. doi:10.1104/pp.109.145987 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kelly AA, Dörmann P (2002) DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277:1166–1173. doi:10.1074/jbc.M110066200 CrossRefPubMedGoogle Scholar
  25. Kelly AA, Froehlich JE, Dörmann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–2706. doi:10.1105/tpc.016675 CrossRefPubMedCentralPubMedGoogle Scholar
  26. Kirchhoff H, Hinz H-J, Rösgen J (2003) Aggregation and fluorescence quenching of chlorophyll a of the light-harvesting complex II from spinach in vitro. Biochim Biophys Acta 1606:105–116. doi:10.1016/S0005-2728(03)00105-1 CrossRefPubMedGoogle Scholar
  27. Kobayashi K, Awai K, Takamiya K, Ohta H (2004) Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol 134:640–648. doi:10.1104/pp.103.032656 CrossRefPubMedCentralPubMedGoogle Scholar
  28. Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104:17216–17221. doi:10.1073/pnas.0704680104 CrossRefPubMedCentralPubMedGoogle Scholar
  29. Kobayashi K, Awai K, Nakamura M, Nagatani A, Masuda T, Ohta H (2009a) Type-B monogalactosyldiacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. Plant J 57:322–331. doi:10.1111/j.1365-313X.2008.03692.x CrossRefPubMedGoogle Scholar
  30. Kobayashi K, Nakamura Y, Ohta H (2009b) Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants. Plant Physiol Biochem 47:518–525. doi:10.1016/j.plaphy.2008.12.012 CrossRefPubMedGoogle Scholar
  31. Kobayashi K, Narise T, Sonoike K, Hashimoto H, Sato N, Kondo M, Nishimura M, Sato M, Toyooka K, Sugimoto K, Wada H, Masuda T, Ohta H (2013) Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. Plant J 73:250–261. doi:10.1111/tpj.12028 CrossRefGoogle Scholar
  32. Kobayashi K, Fujii S, Sasaki D, Baba S, Ohta H, Masuda T, Wada H (2014) Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis. Front Plant Sci 5:272. doi:10.3389/fpls.2014.00272 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Kuang TY, Argyroudi-Akoyunoglou JH, Nakatani HY, Watson J, Arntzen CJ (1984) The origin of the long-wavelength fluorescence emission band (77°K) from photosystem I. Arch Biochem Biophys 235:618–627CrossRefPubMedGoogle Scholar
  34. Li-Beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161. doi:10.1199/tab.0161 CrossRefPubMedCentralPubMedGoogle Scholar
  35. McCourt P, Browse J, Watson J, Arntzen CJ, Somerville CR (1985) Analysis of photosynthetic antenna function in a mutant of Arabidopsis thaliana (L.) lacking trans-hexadecenoic acid. Plant Physiol 78:853–858CrossRefPubMedCentralPubMedGoogle Scholar
  36. Melis A, Spangfort M, Andersson B (1987) Light-absorption and electron-transport balance between photosystem II and photosystem I in spinach chloroplasts. Photochem Photobiol 45:129–136CrossRefGoogle Scholar
  37. Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta 1817:194–208. doi:10.1016/j.bbabio.2011.04.008 CrossRefPubMedGoogle Scholar
  38. Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K, Tanaka H, Matsuda F, Hirai A, Hirai MY, Ohta H, Saito K (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909. doi:10.1105/tpc.108.063925 CrossRefPubMedCentralPubMedGoogle Scholar
  39. Okazaki Y, Otsuki H, Narisawa T, Kobayashi M, Sawai S, Kamide Y, Kusano M, Aoki T, Hirai MY, Saito K (2013) A new class of plant lipid is essential for protection against phosphorus depletion. Nat Commun 4:1510. doi:10.1038/ncomms2512 CrossRefPubMedCentralPubMedGoogle Scholar
  40. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2003–2007CrossRefGoogle Scholar
  41. Powikrowska M, Oetke S, Jensen PE, Krupinska K (2014) Dynamic composition, shaping and organization of plastid nucleoids. Front Plant Sci 5:424. doi:10.3389/fpls.2014.00424 CrossRefPubMedCentralPubMedGoogle Scholar
  42. Sakurai I, Hagio M, Gombos Z, Tyystjärvi T, Paakkarinen V, Aro EM, Wada H (2003) Requirement of phosphatidylglycerol for maintenance of photosynthetic machinery. Plant Physiol 133:1376–1384. doi:10.1104/pp.103.026955.ity CrossRefPubMedCentralPubMedGoogle Scholar
  43. Sakurai I, Mizusawa N, Ohashi S, Kobayashi M, Wada H (2007) Effects of the lack of phosphatidylglycerol on the donor side of photosystem II. Plant Physiol 144:1336–1346. doi:10.1104/pp.107.098731 CrossRefPubMedCentralPubMedGoogle Scholar
  44. Sato N, Hagio M, Wada H, Tsuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci USA 97:10655–10660CrossRefPubMedCentralPubMedGoogle Scholar
  45. Sato N, Suda K, Tsuzuki M (2004) Responsibility of phosphatidylglycerol for biogenesis of the PSI complex. Biochim Biophys Acta 1658:235–243. doi:10.1016/j.bbabio.2004.06.008 CrossRefPubMedGoogle Scholar
  46. Schweer J, Türkeri H, Kolpack A, Link G (2010) Role and regulation of plastid sigma factors and their functional interactors during chloroplast transcription - recent lessons from Arabidopsis thaliana. Eur J Cell Biol 89:940–946. doi:10.1016/j.ejcb.2010.06.016 CrossRefPubMedGoogle Scholar
  47. Tanoue R, Kobayashi M, Katayama K, Nagata N, Wada H (2014) Phosphatidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis. FEBS Lett 588:1680–1685. doi:10.1016/j.febslet.2014.03.010 CrossRefPubMedGoogle Scholar
  48. Toyooka K, Okamoto T, Minamikawa T (2000) Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol 148:453–464CrossRefPubMedCentralPubMedGoogle Scholar
  49. Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60. doi:10.1038/nature09913 CrossRefPubMedGoogle Scholar
  50. Wada H, Murata N (2007) The essential role of phosphatidylglycerol in photosynthesis. Photosynth Res 92:205–215. doi:10.1007/s11120-007-9203-z CrossRefPubMedGoogle Scholar
  51. Waters MT, Wang P, Korkaric M, Capper RG, Saunders NJ, Langdale JA (2009) GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis. Plant Cell 21:1109–1128. doi:10.1105/tpc.108.065250 CrossRefPubMedCentralPubMedGoogle Scholar
  52. Yu B, Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36:762–770. doi:10.1046/j.1365-313X.2003.01918.x CrossRefPubMedGoogle Scholar
  53. Yu B, Xu C, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99:5732–7537. doi:10.1073/pnas.082696499 CrossRefPubMedCentralPubMedGoogle Scholar
  54. Zhou Y, Peisker H, Weth A, Baumgartner W, Dörmann P, Frentzen M (2013) Extraplastidial cytidinediphosphate diacylglycerol synthase activity is required for vegetative development in Arabidopsis thaliana. Plant J 75:867–879. doi:10.1111/tpj.12248 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Koichi Kobayashi
    • 1
  • Sho Fujii
    • 1
  • Mayuko Sato
    • 3
  • Kiminori Toyooka
    • 3
  • Hajime Wada
    • 1
    • 2
  1. 1.Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
  2. 2.CREST, JSTKawaguchiJapan
  3. 3.RIKEN Center for Sustainable Resource ScienceYokohamaJapan

Personalised recommendations