Plant Cell Reports

, Volume 33, Issue 5, pp 707–718 | Cite as

Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie’s lab and the Chuanyou Li’s lab

  • Claus Wasternack


Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCFCOI1–JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie’s lab and Chuanyou Li’s lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId’s) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.


Jasmonate biosynthesis Jasmonate perception Jasmonate signal transduction Cross-talk Daoxin Xie’s lab Chuanyou Li’s lab 



Abscisic acid


Allene oxide synthase








Gibberellic acid


Hydroperoxide lyase


Jasmonic acid


JA isoleucine conjugate


JA methyl ester


JA resistant1




α-Linolenic acid (18:3)




R2R3-type TFs


bHLHzip-type TFs


12-Oxophytodienoic acid






Salicylic acid


Transcription factor





The author was supported by the Region HANA for Biotechnological and Agricultural Research, Czech Republic (Grant No. ED0007/01/01). The author thanks Prof. Dr. B. Hause (IPB, Halle/Saale, Germany) for helpful discussions and critical reading of the manuscript. The author thank for copyright transfer for Fig. 1 (initially published in Wasternack 2007) and Fig. 2 (initially published in Wasternack and Hause 2013) by Oxford University Press. The Fig. 3 was designed using a micrograph of Dr. Jens Müller (Halle, Germany). The author (C.W.) evaluated the references and wrote the manuscript

Conflict of interest

The author declares that there is no conflict of interest.


  1. Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318PubMedCrossRefGoogle Scholar
  2. Browse J (2009a) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205PubMedCrossRefGoogle Scholar
  3. Browse J (2009b) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70:1539–1546PubMedCrossRefGoogle Scholar
  4. Bu Q, Jiang H, Li C-B, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the A. thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756-767Google Scholar
  5. Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D, Li C (2009) The Arabidopsis RING Finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol 150:463–481PubMedCentralPubMedCrossRefGoogle Scholar
  6. Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F, Kliebenstein D, Dehesh K (2008) Distinct roles of jasmonates and aldehydes in plant-defense responses. PLoS One 3:e1904PubMedCentralPubMedCrossRefGoogle Scholar
  7. Chen M, Liu H, Kong J, Yang Y, Zhang N, Li R, Yue J, Huang J, Li C, Cheung AY, L-z Tao (2011a) RopGEF7 regulates PLETHORA-dependent maintenance of the root stem cell niche in Arabidopsis. Plant Cell Online 23:2880–2894CrossRefGoogle Scholar
  8. Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Qi J, Li X, Palme K, Li C (2011b) The basic helix–loop–helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell Online 23:3335–3352CrossRefGoogle Scholar
  9. Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C (2012) The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell Online 24:2898–2916CrossRefGoogle Scholar
  10. Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440PubMedCentralPubMedCrossRefGoogle Scholar
  11. Cheng Z, Sun L, Qi T, Zhang B, Peng W, Liu Y, Xie D (2011) The bHLH transcription factor MYC3 interacts with the jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Mol Plant 4:279–288PubMedCrossRefGoogle Scholar
  12. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671PubMedCrossRefGoogle Scholar
  13. Cui H, Sun Y, Su J, Li C, Ge F (2012) Reduction in the fitness of Bemisia tabaci fed on three previously infested tomato genotypes differing in the jasmonic acid pathway. Environ Entomol 41:1443–1453PubMedCrossRefGoogle Scholar
  14. Dathe W, Rönsch H, Preiss A, Schade W, Sembdner G, Schreiber K (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (–)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 155:530–535CrossRefGoogle Scholar
  15. Demole E, Lederer E, Mercier D (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant charactéristique de lèssence de jasmin. Helv et Chim Acta 45:675–685CrossRefGoogle Scholar
  16. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner J (2002) COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J 32:457–466PubMedCrossRefGoogle Scholar
  17. Farmaki T, Sanmartin M, Jimenez P, Paneque M, Sanz C, Vancanneyt G, Leon J, Sanchez-Serrano JJ (2007) Differential distribution of the lipoxygenase pathway enzymes within potato chloroplasts. J Exp Bot 58:555–568PubMedCrossRefGoogle Scholar
  18. Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci 87:7713–7716PubMedCentralPubMedCrossRefGoogle Scholar
  19. Feng S, Ma L, Wang X, Xie D, Dinesh-Kumar SP, Wei N, Deng XW (2003) The COP9 signalosome interacts physically with SCFCOI1 and modulates jasmonate responses. Plant Cell Online 15:1083–1094CrossRefGoogle Scholar
  20. Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715PubMedCentralPubMedCrossRefGoogle Scholar
  21. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297PubMedCrossRefGoogle Scholar
  22. Feys B, Benedetti C, Penfold C, Turner J (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistent to a bacterial pathogen. Plant Cell 6:751–759PubMedCentralPubMedGoogle Scholar
  23. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350PubMedCrossRefGoogle Scholar
  24. Goetz S, Hellwege A, Stenzel I, Kutter C, Hauptmann V, Forner S, McCaig B, Hause G, Miersch O, Wasternack C, Hause B (2012) Role of cis-12-oxo-phytodienoic acid in tomato embryo development. Plant Physiol 158:1715–1727PubMedCentralPubMedCrossRefGoogle Scholar
  25. Gu M, Yan J, Bai Z, Chen Y-T, Lu W, Tang J, Duan L, Xie D, Nan F-J (2010) Design and synthesis of biotin-tagged photoaffinity probes of jasmonates. Bioorgan Med Chem 18:3012–3019CrossRefGoogle Scholar
  26. Gundlach H, Müller M, Kutchan T, Zenk M (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Nat Acad Sci USA 89:2389–2393PubMedCentralPubMedCrossRefGoogle Scholar
  27. Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P, Désaubry L, Holder E, Grausem B, Kandel S, Miesch M, Werck-Reichhart D, Pinot F (2012) Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-l-isoleucine for catabolic turnover. J Biol Chem 287:6296–6306PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D (2013) JAV1 controls jasmonate-regulated plant defense. Mol Cell 50:504–515PubMedCrossRefGoogle Scholar
  29. Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q (2013) Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. J Exp Bot 64:637–650PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703PubMedCrossRefGoogle Scholar
  31. Kombrink E (2012) Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta 236:1351–1366PubMedCrossRefGoogle Scholar
  32. Koo AJK, Gao X, Jones AD, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–986PubMedCrossRefGoogle Scholar
  33. Koo AJK, Cooke TF, Howe GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-l-isoleucine. Proc Nat Acad Sci USA 108:9298–9303PubMedCentralPubMedCrossRefGoogle Scholar
  34. Lechner E, Xie D, Grava S, Pigaglio E, Planchais S, Murray J, Genschik P (2002) The AtRbx1 protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects. J Biol Chem 277:50069–50080PubMedCrossRefGoogle Scholar
  35. Li L, Li C, Lee GI, Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99:6416–6421Google Scholar
  36. Li C, Liu G, Xu C, Lee G, Bauer P, Ling H-Q, Ganal M, Howe G (2003) The tomato suppressor of prosystemin-mediated response2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646–1661PubMedCentralPubMedCrossRefGoogle Scholar
  37. Li L, McCaig B, Wingerd B, Wang J, Whaton M, Pichersky E, Howe G (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143PubMedCentralPubMedCrossRefGoogle Scholar
  38. Li C, Schilmiller AL, Liu G, Lee GI, Jayanty S, Sageman C, Vrebalov J, Giovannoni JJ, Yagi K, Kobayashi Y, Howe GA (2005) Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17:971–986PubMedCentralPubMedCrossRefGoogle Scholar
  39. Li H, Sun J, Xu Y, Jiang H, Wu X, Li C (2007) The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Mol Biol 65:655–665PubMedCrossRefGoogle Scholar
  40. Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, Li C (2011) The Arabidopsis RING Finger E3 ligase RHA2b acts additively with Rha2a in regulating abscisic acid signaling and drought response. Plant Physiol 156:550–563PubMedCentralPubMedCrossRefGoogle Scholar
  41. Liu F, Ni W, Griffith ME, Huang Z, Chang C, Peng W, Ma H, Xie D (2004) The ASK1 and ASK2 genes are essential for Arabidopsis early development. Plant Cell Online 16:5–20CrossRefGoogle Scholar
  42. Liu X, Li F, Tang J, Wang W, Zhang F, Wang G, Chu J, Yan C, Wang T, Chu C, Li C (2012) Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS One 7:e50089PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950PubMedCentralPubMedCrossRefGoogle Scholar
  44. Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C (2008) Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–127PubMedGoogle Scholar
  45. Nakata M, Mitsuda N, Herde M, Koo AJK, Moreno JE, Suzuki K, Howe GA, Ohme-Takagi M (2013) A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25:1641–1656PubMedCrossRefGoogle Scholar
  46. Ni W, Xie D, Hobbie L, Feng B, Zhao D, Akkara J, Ma H (2004) Regulation of flower development in Arabidopsis by SCF complexes. Plant Physiol 134:1574–1585PubMedCentralPubMedCrossRefGoogle Scholar
  47. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791PubMedCentralPubMedCrossRefGoogle Scholar
  48. Peng Z, Han C, Yuan L, Zhang K, Huang H, Ren C (2011) Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. J Integr Plant Biol 53:632–640PubMedCrossRefGoogle Scholar
  49. Pieterse CMJ, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521PubMedCrossRefGoogle Scholar
  50. Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in A. thaliana. Plant Cell Online 23:1795–1814CrossRefGoogle Scholar
  51. Qi L, Yan J, Li Y, Jiang H, Sun J, Chen Q, Li H, Chu J, Yan C, Sun X, Yu Y, Li C, Li C (2012) Arabidopsis thaliana plants differentially modulate auxin biosynthesis and transport during defense responses to the necrotrophic pathogen Alternaria brassicicola. New Phytol 195:872–882PubMedCrossRefGoogle Scholar
  52. Ren C, Pan J, Peng W, Genschik P, Hobbie L, Hellmann H, Estelle M, Gao B, Peng J, Sun C, Xie D (2005) Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. Plant J 42:514–524PubMedCrossRefGoogle Scholar
  53. Ren C, Han C, Peng W, Huang Y, Peng Z, Xiong X, Zhu Q, Gao B, Xie D (2009) A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiol 151:1412–1420PubMedCentralPubMedCrossRefGoogle Scholar
  54. Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast Grr1p. Genes Dev 12:198–207PubMedCentralPubMedCrossRefGoogle Scholar
  55. Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–1061Google Scholar
  56. Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S, Kamiya Y, Ohta H, Shirasu K (2013) Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiology 163:291–304Google Scholar
  57. Schaller A, Bergey D, Ryan C (1995) Induction of wound response genes in tomato leaves by Bestatin, an inhibitor of aminopeptidases. Plant Cell 7:1893–1898PubMedCentralPubMedGoogle Scholar
  58. Schilmiller AL, Koo AJK, Howe GA (2007) Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143:812–824PubMedCentralPubMedCrossRefGoogle Scholar
  59. Shan X, Zhang Y, Peng W, Wang Z, Xie D (2009) Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J Exp Bot 60:3849–3860PubMedCrossRefGoogle Scholar
  60. Shan X, Yan J, Xie D (2012) Comparison of phytohormone signaling mechanisms. Curr Opin Plant Biol 15:84–91PubMedCrossRefGoogle Scholar
  61. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu F-F, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468:400–405PubMedCentralPubMedCrossRefGoogle Scholar
  62. Shen J, Tieman D, Jones JB, Taylor MG, Schmelz E, Huffaker A, Bies D, Chen K, Klee HJ (2014) A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J Exp Bot 65:419–428PubMedCentralPubMedCrossRefGoogle Scholar
  63. Shih C-F, Hsu W-H, Peng Y-J, Yang C-H (2014) The NAC-like gene ANTHER INDEHISCENCE FACTOR acts as a repressor that controls anther dehiscence by regulating genes in the jasmonate biosynthesis pathway in Arabidopsis. J Exp Bot 65:621–639PubMedCentralPubMedCrossRefGoogle Scholar
  64. Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–1013PubMedCentralPubMedCrossRefGoogle Scholar
  65. Song S, Qi T, Fan M, Zhang X, Gao H, Huang H, Wu D, Guo H, Xie D (2013a) The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet 9:e1003653PubMedCentralPubMedCrossRefGoogle Scholar
  66. Song S, Qi T, Huang H, Xie D (2013b) Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. Mol Plant 6:1065–1073PubMedGoogle Scholar
  67. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127PubMedCentralPubMedCrossRefGoogle Scholar
  68. Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C (2003) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51:895-911Google Scholar
  69. Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630PubMedCentralPubMedCrossRefGoogle Scholar
  70. Stintzi A, Weber H, Reymond P, Browse J, Farmer E (2001) Plant defense in the absence of jasmonic acid: the role of cyclopentanones. Proc Natl Acad Sci USA 98:12837–12842PubMedCentralPubMedCrossRefGoogle Scholar
  71. Stratmann JW, Gusmaroli G (2012) Many jobs for one good cop––the COP9 signalosome guards development and defense. Plant Sci 185–186:50–64PubMedCrossRefGoogle Scholar
  72. Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511PubMedCentralPubMedCrossRefGoogle Scholar
  73. Sun J, Chen Q, Qi L, Jiang H, Li S, Xu Y, Liu F, Zhou W, Pan J, Li X, Palme K, Li C (2011) Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol 191:360–375PubMedCrossRefGoogle Scholar
  74. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–665PubMedCrossRefGoogle Scholar
  75. Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249PubMedCentralPubMedCrossRefGoogle Scholar
  76. Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Comm 111:470–477PubMedCrossRefGoogle Scholar
  77. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697PubMedCentralPubMedCrossRefGoogle Scholar
  78. Wasternack C (2014) Action of jasmonates in plant stress responses and development––applied aspects. Biotechnol Adv 32:31–39PubMedCrossRefGoogle Scholar
  79. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058PubMedCrossRefGoogle Scholar
  80. Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77PubMedCrossRefGoogle Scholar
  81. Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM (2012) Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336:1708–1711PubMedCrossRefGoogle Scholar
  82. Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735PubMedCrossRefGoogle Scholar
  83. Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D (2004) COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell 16:1132–1142PubMedCentralPubMedCrossRefGoogle Scholar
  84. Xie D-X, Feys B, James S, Nieto-Rostro M, Turner J (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094PubMedCrossRefGoogle Scholar
  85. Xu L, Liu F, Lechner E, Genschik P, Crosby W, Ma H, Peng W, Huang D, Xie D (2002) The SCF-coi1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14:1919–1935PubMedCentralPubMedCrossRefGoogle Scholar
  86. Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483PubMedCentralPubMedCrossRefGoogle Scholar
  87. Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236PubMedCentralPubMedCrossRefGoogle Scholar
  88. Yan J, Li H, Li S, Yao R, Deng H, Xie Q, Xie D (2013a) The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell Online 25:486–498CrossRefGoogle Scholar
  89. Yan L, Zhai Q, Wei J, Li S, Wang B, Huang T, Du M, Sun J, Kang L, Li C-B, Li C (2013b) Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9:e1003964PubMedCentralPubMedCrossRefGoogle Scholar
  90. Yu X, Pasternak T, Eiblmeier M, Ditengou F, Kochersperger P, Sun J, Wang H, Rennenberg H, Teale W, Paponov I, Zhou W, Li C, Li X, Palme K (2013) Plastid-localized glutathione reductase2––regulated glutathione redox status is essential for Arabidopsis root apical meristem maintenance. Plant Cell 25: 4451-4468Google Scholar
  91. Zhai Q, Yan L, Tan D, Chen R, Sun J, Gao L, Dong M-Q, Wang Y, Li C (2013) Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLoS Genet 9:e1003422PubMedCentralPubMedCrossRefGoogle Scholar
  92. Zhang L, Jia C, Liu L, Zhang Z, Li C, Wang Q (2011) The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death. J Exp Bot 62:5405–5418PubMedCentralPubMedCrossRefGoogle Scholar
  93. Zheng W, Zhai Q, Sun J, Li C-B, Zhang L, Li H, Zhang X, Li S, Xu Y, Jiang H, Wu X, Li C (2006) Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. Plant Physiol 141:1400–1413PubMedCentralPubMedCrossRefGoogle Scholar
  94. Zhou W, Wei L, Xu J, Zhai Q, Jiang H, Chen R, Chen Q, Sun J, Chu J, Zhu L, Liu C-M, Li C (2010) Arabidopsis tyrosylprotein sulfotransferase acts in the Auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche. Plant Cell 22:3692–3709PubMedCentralPubMedCrossRefGoogle Scholar
  95. Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M, Wasternack C (2000) Molecular cloning of allene oxide cyclase: the enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275:19132–19138PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Molecular Signal ProcessingLeibniz Institute of Plant BiochemistryHalle (Saale)Germany
  2. 2.Laboratory of Growth RegulatorsPalacky University and Institute of Experimental Botany ASCROlomoucCzech Republic

Personalised recommendations