Plant Cell Reports

, Volume 33, Issue 6, pp 929–944 | Cite as

A novel T-DNA integration in rice involving two interchromosomal translocations

  • Bharat Bhusan Majhi
  • Jasmine M. Shah
  • Karuppannan Veluthambi
Original Paper

Abstract

Key message

A male sterile transgenic rice plant TC-19 harboured a novel T-DNA integration in chromosome 8 with two interchromosomal translocations of 6.55 kb chromosome 3 and 29.8 kb chromosome 9 segments.

Abstract

We report a complex Agrobacterium T-DNA integration in rice (Oryza sativa) associated with two interchromosomal translocations. The T-DNA-tagged rice mutant TC-19, which harboured a single copy of the T-DNA, displayed male sterile phenotype in the homozygous condition. Analysis of the junctions between the T-DNA ends and the rice genome by genome walking showed that the right border is flanked by a chromosome 3 sequence and the left border is flanked by a chromosome 9 sequence. Upon further walking on chromosome 3, a chromosome 3/chromosome 8 fusion was detected. Genome walking from the opposite end of the chromosome 8 break point revealed a chromosome 8/chromosome 9 fusion. Our findings revealed that the T-DNA, together with a 6.55-kb region of chromosome 3 and a 29.8-kb region of chromosome 9, was translocated to chromosome 8. Southern blot analysis of the homozygous TC-19 mutant revealed that the native sequences of chromosome 3 and 9 were restored but the disruption of chromosome 8 in the first intron of the gene Os08g0152500 was not restored. The integration of the complex T-DNA in chromosome 8 caused male sterility.

Keywords

Agrobacterium Genome walking Interchromosomal translocation Male sterility Rice T-DNA integration 

Abbreviations

T-DNA

Transferred DNA

MS

Murashige and Skoog

hph

Hygromycin phosphotransferase gene

cht42

Chitinase gene of Trichoderma virens

TT

Homozygous transgenic event

Tt

Hemizygous transgenic event

LB

T-DNA left border

RB

T-DNA right border

BLAST

Basic local alignment search tool

GSP

Gene-specific primer

AP

Adaptor primer

IRGSP

International rice genome sequencing project

NCBI

National Center for Biotechnology Information

Notes

Acknowledgments

We thank Dr. K. Dharmalingam, School of Biotechnology, Madurai Kamaraj University for his permission to use the radioisotope facility. This work was supported by Department of Biotechnology, Ministry of Science & Technology, Government of India [Project entitled “Functional Analysis of Gene Regulatory Networks During Flower and Seed development in rice”, Project No. BT/AB/FG-I(PH-II)(5)2009].

Supplementary material

299_2014_1572_MOESM1_ESM.doc (98 kb)
Supplementary material 1 (DOC 97 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  2. Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13:152–156PubMedCrossRefGoogle Scholar
  3. Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon ES, Meinke DW (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241:504–514PubMedCrossRefGoogle Scholar
  4. Chilton MD, Que Q (2003) Targeted integration of T-DNA into the tobacco genome at double-stranded breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133:956–965PubMedCentralPubMedCrossRefGoogle Scholar
  5. Clark KA, Krysan PJ (2010) Chromosomal translocations are a common phenomenon in Arabidopsis thaliana T-DNA insertion lines. Plant J 64:990–1001PubMedCentralPubMedCrossRefGoogle Scholar
  6. Curtis MJ, Belcream K, Boilmann SR, Timoney CM, Hoffman PD, Mercier R, Hays JB (2009) Reciprocal chromosomal translocation associated with T-DNA-insertion mutation in Arabidopsis: genetic and cytological analysis of consequences for gametophyte development and for construction of doubly mutant lines. Planta 229:731–745PubMedCrossRefGoogle Scholar
  7. De Neve M, De Buck S, Jacobs A, Van Montagu M, Depicker A (1997) T- DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29PubMedCrossRefGoogle Scholar
  8. Forsbach A, Schubert D, Lichtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52:161–176PubMedCrossRefGoogle Scholar
  9. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37PubMedCentralPubMedCrossRefGoogle Scholar
  10. Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68PubMedCrossRefGoogle Scholar
  11. Gheysen G, Van Montagu M, Zambyski P (1987) Integration of Agrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA sequences. Proc Natl Acad Sci USA 84:6169–6173PubMedCentralPubMedCrossRefGoogle Scholar
  12. Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–297PubMedCrossRefGoogle Scholar
  13. Guan C, Rosen ES, Boonsirichai K, Poff KL, Masson PH (2003) The ARG1-LIKE2 gene of Arabidopsis functions in a gravity signal transduction pathway that is genetically distinct from the PGM pathway. Plant Physiol 133:100–112PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gutensohn M, Pahnke S, Kolukisaoglu U, Schulz B, Schierhorn A, Voigt A, Hust B, Rollwitz I, Stockel J, Geimer S, Albrecht V, Flugge UI, Klosgen RB (2004) Characterization of a T-DNA insertion mutant for the protein import receptor atToc33 from chloroplasts. Mol Gen Genomics 272:379–396CrossRefGoogle Scholar
  15. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  16. Kaya H, Sato S, Tabata S, Kobayashi Y, Iwabuchi M, Araki T (2000) hosoba toge toge, a syndrome caused by a large chromosomal deletion associated with a T-DNA insertion in Arabidopsis. Plant Cell Physiol 41:1055–1066PubMedCrossRefGoogle Scholar
  17. Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, An G (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761–773PubMedCrossRefGoogle Scholar
  18. Lafleuriel J, Degroote F, Depeiges A, Picard G (2004) A reciprocal translocation, induced by a canonical integration of a single T-DNA, interrupts the HMG-I/Y Arabidopsis thaliana gene. Plant Physiol Biochem 42:171–179PubMedCrossRefGoogle Scholar
  19. Laufs P, Autran D, Traas J (1999) A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J 18:131–139PubMedCrossRefGoogle Scholar
  20. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704PubMedCentralPubMedGoogle Scholar
  21. Murashige Τ, Skoog F (1962) A revised method for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497CrossRefGoogle Scholar
  22. Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149:641–650PubMedCentralPubMedGoogle Scholar
  23. Negruk V, Eisner G, Lemieux B (1996) Addition-deletion mutations in transgenic Arabidopsis thaliana generated by the seed co-cultivation method. Genome 39:1117–1122PubMedCrossRefGoogle Scholar
  24. Ohba T, Yoshioka Y, Machida C, Machida Y (1995) DNA rearrangement associated with the integration of T-DNA in tobacco: an example for multiple duplications of DNA around the integration target. Plant J 7:157–164PubMedCrossRefGoogle Scholar
  25. Ramanathan V, Veluthambi K (1995) Transfer of non-T-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from the left terminus of TL-DNA. Plant Mol Biol 28:1149–1154PubMedCrossRefGoogle Scholar
  26. Ray S, Park SS, Ray A (1997) Pollen tube guidance by the female gametophyte. Development 124:2489–2498PubMedGoogle Scholar
  27. Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual, vol A6. Kluwer, Dordrecht, pp 1–10Google Scholar
  28. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17:6086–6095PubMedCentralPubMedCrossRefGoogle Scholar
  29. Sha Y, Li S, Pei Z, Luo L, Tian Y, He C (2004) Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor Appl Genet 108:306–314PubMedCrossRefGoogle Scholar
  30. Shah JM, Raghupathy V, Veluthambi K (2008) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31:239–244PubMedCrossRefGoogle Scholar
  31. Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088PubMedCentralPubMedCrossRefGoogle Scholar
  32. Singer K, Shiboleth YM, Li J, Tzfira T (2012) Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. Plant Physiol 160:511–522PubMedCentralPubMedCrossRefGoogle Scholar
  33. Sridevi G, Parameswari C, Rajamuni P, Veluthambi K (2006) Identification of hemizygous and homozygous transgenic rice plants in T1 generation by DNA blot analysis. Plant Biotechnol 23:531–534CrossRefGoogle Scholar
  34. Takano M, Egawa H, Ikeda JH, Wakasa K (1997) The structures of integration sites in transgenic rice. Plant J 11:353–361PubMedCrossRefGoogle Scholar
  35. Tax FE, Vernon DM (2001) T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol 126:1527–1538PubMedCentralPubMedCrossRefGoogle Scholar
  36. Tinland B (1996) The integration of T-DNA into plant genomes. Trends Plant Sci 1:178–184CrossRefGoogle Scholar
  37. Tinland B, Hohn B (1995) Recombination between prokaryotic and eukaryotic DNA: integration of Agrobacterium tumefaciens T-DNA into the plant genome. Genet Eng 17:209–229Google Scholar
  38. Tzfira T, Frankman LR, Vaidya M, Citovsky V (2003) Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol 133:1011–1023PubMedCentralPubMedCrossRefGoogle Scholar
  39. Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A (2003) T-DNA integration in Arabidopsis chromosomes: presence and origin of filler DNA sequences. Plant Physiol 133:2061–2068PubMedCentralPubMedCrossRefGoogle Scholar
  40. Yuen CY, Sedbrook JC, Perrin RM, Carroll KL, Masson PH (2005) Loss-of function mutations of ROOT HAIR DEFECTIVE3 suppress root waving, skewing, and epidermal cell file rotation in Arabidopsis. Plant Physiol 138:701–714PubMedCentralPubMedCrossRefGoogle Scholar
  41. Zambryski PC, Depicker A, Kruger K, Goodman HM (1982) Tumor induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA. J Mol Appl Genet 1:361–370PubMedGoogle Scholar
  42. Zhao Z, Zhu Y, Erhardt M, Ruan Y, Shen WH (2009) A non-canonical transferred DNA insertion at the BRI1 locus in Arabidopsis thaliana. J Integr Plant Biol 51:367–373PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bharat Bhusan Majhi
    • 1
  • Jasmine M. Shah
    • 1
  • Karuppannan Veluthambi
    • 1
  1. 1.Department of Plant Biotechnology, School of BiotechnologyMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations