Advertisement

Plant Cell Reports

, Volume 33, Issue 4, pp 575–583 | Cite as

Targeted genome modification technologies and their applications in crop improvements

  • Kunling Chen
  • Caixia Gao
Review

Abstract

Recent advances in genome engineering indicate that innovative crops developed by targeted genome modification (TGM) using site-specific nucleases (SSNs) have the potential to avoid the regulatory issues raised by genetically modified organisms. These powerful SSNs tools, comprising zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regulatory interspaced short palindromic repeats/CRISPR-associated systems, enable precise genome engineering by introducing DNA double-strand breaks that subsequently trigger DNA repair pathways involving either non-homologous end-joining or homologous recombination. Here, we review developments in genome-editing tools, summarize their applications in crop organisms, and discuss future prospects. We also highlight the ability of these tools to create non-transgenic TGM plants for next-generation crop breeding.

Keywords

Targeted genome modification Site-specific nucleases (SSNs) ZFNs TALENs CRISPRs Crop improvement 

Notes

Acknowledgments

The work was supported by the Ministry of Agriculture of China (2013ZX08002-004 and 2013ZX08010-002) and the National Natural Science Foundation of China (Grant Nos. 201263, 383601, and 31200273).

References

  1. Alberts B (2012) The breakthroughs of 2012. Science 338:1511PubMedCrossRefGoogle Scholar
  2. Bae K-H, Do Kwon Y, Shin H-C, Hwang M-S, Ryu E-H, Park K-S, Yang H-Y, D-k Lee, Lee Y, Park J (2003) Human zinc fingers as building blocks in the construction of artificial transcription factors. Nat Biotechnol 21:275–280PubMedCrossRefGoogle Scholar
  3. Baker M (2012) Gene-editing nucleases. Nat Methods 9:23–26PubMedCrossRefGoogle Scholar
  4. Barrangou R (2012) RNA-mediated programmable DNA cleavage. Nat Biotechnol 30:836–838PubMedCrossRefGoogle Scholar
  5. Barrangou R (2013) CRISPR-Cas systems and RNA-guided interference. Wiley interdiscip Rev RNA 4:267–278PubMedCrossRefGoogle Scholar
  6. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436PubMedCrossRefGoogle Scholar
  7. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedCrossRefGoogle Scholar
  8. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846PubMedCrossRefGoogle Scholar
  9. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401PubMedCrossRefGoogle Scholar
  10. Cai C, Doyon Y, Ainley WM, Miller J, DeKelver R, Moehle E, Rock J, Lee Y-L, Garrison R, Schulenberg L, Blue R, Worden A, Baker L, Faraji F, Zhang L, Holmes M, Rebar E, Collingwood T, Rubin-Wilson B, Gregory P, Urnov F, Petolino J (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69:699–709PubMedCrossRefGoogle Scholar
  11. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82PubMedCentralPubMedCrossRefGoogle Scholar
  13. Chen K, Gao C (2013) TALENs: customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40:271–279PubMedCrossRefGoogle Scholar
  14. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761PubMedCentralPubMedCrossRefGoogle Scholar
  15. Christian M, Qi Y, Zhang Y, Voytas DF (2013) Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases (TALENs). G3 (Bethesda). doi: 10.1534/g3.113.007104
  16. Cong L, Zhou R, Y-c Kuo, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedCentralPubMedCrossRefGoogle Scholar
  18. Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dahlborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011) Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol 156:466–473PubMedCentralPubMedCrossRefGoogle Scholar
  19. Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genome 5:42–50CrossRefGoogle Scholar
  20. De Francesco L (2012) Erratum: Move over ZFNs. Nat Biotechnol 30:112CrossRefGoogle Scholar
  21. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723PubMedCentralPubMedCrossRefGoogle Scholar
  22. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990PubMedCentralPubMedCrossRefGoogle Scholar
  23. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu JK (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232PubMedCentralPubMedCrossRefGoogle Scholar
  24. Gaj T, Gersbach CA, Barbas Iii CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedCrossRefGoogle Scholar
  25. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700PubMedCrossRefGoogle Scholar
  26. Jiang WZ, Zhou HB, Bi HH, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. doi: 10.1093/nar/gkt780 Google Scholar
  27. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  28. Joung JK, Sander JD (2012) TALENs: a widely applicable technology for targeted genome editing. Nature reviews. Nat Rev Mol Cell Biol 14:49–55PubMedCentralPubMedCrossRefGoogle Scholar
  29. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39:6315–6325PubMedCentralPubMedCrossRefGoogle Scholar
  30. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392PubMedCrossRefGoogle Scholar
  31. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691PubMedCrossRefGoogle Scholar
  32. Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nature Biotechnol 30:231–239CrossRefGoogle Scholar
  33. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301PubMedCentralPubMedCrossRefGoogle Scholar
  34. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719PubMedCentralPubMedCrossRefGoogle Scholar
  35. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mao Y, Zhang H, Xu N, Zhang B, Gao F, Zhu JK (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant. doi: 10.1093/mp/sst121 PubMedGoogle Scholar
  37. Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vainstein A (2010) Nontransgenic genome modification in plant cells. Plant Physiol 154:1079–1087PubMedCentralPubMedCrossRefGoogle Scholar
  38. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L-J (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. doi: 10.1038/cr.2013 PubMedCentralGoogle Scholar
  39. Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799PubMedCentralPubMedCrossRefGoogle Scholar
  40. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501PubMedCrossRefGoogle Scholar
  41. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693PubMedCrossRefGoogle Scholar
  42. Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107:12034–12039PubMedCentralPubMedCrossRefGoogle Scholar
  43. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340PubMedCrossRefGoogle Scholar
  44. Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021PubMedCentralPubMedGoogle Scholar
  45. Pennisi E (2013) The CRISPR craze. Science 341:833–836PubMedCrossRefGoogle Scholar
  46. Podevin N, Davies HV, Hartung F, Nogué F, Casacuberta JM (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends Biotechnol 31:375–383PubMedCrossRefGoogle Scholar
  47. Reyon D, Khayter C, Regan MR, Joung JK, Sander JD (2012a) Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly. Curr Protoc Mol Biol 100:12151–121514Google Scholar
  48. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012b) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465PubMedCentralPubMedCrossRefGoogle Scholar
  49. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y (2010) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69PubMedCentralPubMedCrossRefGoogle Scholar
  50. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698PubMedCentralPubMedCrossRefGoogle Scholar
  51. Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013a) Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6:1365–1368PubMedCrossRefGoogle Scholar
  52. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L, Gao C (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedCrossRefGoogle Scholar
  53. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedCrossRefGoogle Scholar
  54. Streubel J, Blucher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595PubMedCrossRefGoogle Scholar
  55. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445PubMedCentralPubMedCrossRefGoogle Scholar
  56. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350PubMedCrossRefGoogle Scholar
  57. Waltz E (2012) Tiptoeing around transgenics. Nat Biotechnol 30:215–217PubMedCrossRefGoogle Scholar
  58. Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS ONE 6:e19722PubMedCentralPubMedCrossRefGoogle Scholar
  59. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285PubMedCrossRefGoogle Scholar
  60. Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protocols 1:1637–1652CrossRefGoogle Scholar
  61. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40:363–383PubMedCrossRefGoogle Scholar
  62. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033PubMedCentralPubMedCrossRefGoogle Scholar
  63. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations