Plant Cell Reports

, Volume 33, Issue 3, pp 393–400 | Cite as

Both the mevalonate and the non-mevalonate pathways are involved in ginsenoside biosynthesis

  • Shoujing Zhao
  • Le Wang
  • Li Liu
  • Yanlong Liang
  • Yao Sun
  • Jianjun Wu
Original Paper


Key Message

When one of them was inhibited, the two pathways could compensate with each other to guarantee normal growth. Moreover, the sterol biosynthesis inhibitor miconazole could enhance ginsenoside level.


Ginsenosides, a kind of triterpenoid saponins derived from isopentenyl pyrophosphate (IPP), represent the main pharmacologically active constituents of ginseng. In plants, two pathways contribute to IPP biosynthesis, namely, the mevalonate pathway in cytosol and the non-mevalonate pathway in plastids. This motivates biologists to clarify the roles of the two pathways in biosynthesis of IPP-derived compounds. Here, we demonstrated that both pathways are involved in ginsenoside biosynthesis, based on the analysis of the effects from suppressing either or both of the pathways on ginsenoside accumulation in Panax ginseng hairy roots with mevinolin and fosmidomycin as specific inhibitors for the mevalonate and the non-mevalonate pathways, respectively. Furthermore, the sterol biosynthesis inhibitor miconazole could enhance ginsenoside levels in the hairy roots. These results shed some light on the way toward better understanding of ginsenoside biosynthesis.


Ginsenoside biosynthesis Hairy roots Mevalonate pathway Non-mevalonate pathway 



This work has been supported by funds from National High Technology Research and Development Program 863 (2013AA102604-3), National Natural Science Foundation of China and Fundamental (31270337), Specialized Research Fund for the Doctoral Program of Higher Education of China (20120061110038), and Fund for Undergraduate Innovation Training Program of Jilin University.


  1. Bach T, Weber T, Motel A (1990) Some properties of enzymes involved in the biosynthesis and metabolism of 3-hydroxy-3-methylglutaryl-CoA in plants. In: Towers GHN, Stafford H (eds) Biochemistry of the mevalonic acid pathway to terpenoids, recent advances in phytochemistry, vol 24. Springer, USA, pp 1–82. doi: 10.1007/978-1-4684-8789-3_1 CrossRefGoogle Scholar
  2. Bamba T, Murayoshi M, Gyoksen K, Nakazawa Y, Okumoto H, Katto H, Fukusaki E, Kobayashi A (2010) Contribution of mevalonate and methylerythritol phosphate pathways to polyisoprenoid biosynthesis in the rubber-producing plant Eucommia ulmoides oliver. J Biosci 65(5–6):363–372Google Scholar
  3. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31(3):461–477. doi: 10.1007/s00299-011-1165-0 PubMedCrossRefGoogle Scholar
  4. Chen S, Luo H, Li Y, Sun Y, Wu Q, Niu Y, Song J, Lv A, Zhu Y, Sun C, Steinmetz A, Qian Z (2011) 454 EST analysis detects genes putatively involved in ginsenoside biosynthesis in Panax ginseng. Plant Cell Rep 30(9):1593–1601. doi: 10.1007/s00299-011-1070-6 PubMedCrossRefGoogle Scholar
  5. Dubey VS, Bhalla R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28(5):637–646PubMedCrossRefGoogle Scholar
  6. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24(9):403–409. doi: 10.1016/j.tibtech.2006.07.002 PubMedCrossRefGoogle Scholar
  7. Hampel D, Mosandl A, Wust M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry 66(3):305–311. doi: 10.1016/j.phytochem.2004.12.010 PubMedCrossRefGoogle Scholar
  8. Hampel D, Swatski A, Mosandl A, Wust M (2007) Biosynthesis of monoterpenes and norisoprenoids in raspberry fruits (Rubus idaeus L.): the role of cytosolic mevalonate and plastidial methylerythritol phosphate pathway. J Agric Food Chem 55(22):9296–9304. doi: 10.1021/jf071311x PubMedCrossRefGoogle Scholar
  9. Heintze A, Gorlach J, Leuschner C, Hoppe P, Hagelstein P, Schulze-Siebert D, Schultz G (1990) Plastidic isoprenoid synthesis during chloroplast development: change from metabolic autonomy to a division-of-labor stage. Plant Physiol 93(3):1121–1127PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hemmerlin A, Bach TJ (1998) Effects of mevinolin on cell cycle progression and viability of tobacco BY-2 cells. Plant J 14(1):65–74. doi: 10.1046/j.1365-313X.1998.00095.x PubMedCrossRefGoogle Scholar
  11. Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278(29):26666–26676. doi: 10.1074/jbc.M302526200 PubMedCrossRefGoogle Scholar
  12. Jung JD, Park HW, Hahn Y, Hur CG, In DS, Chung HJ, Liu JR, Choi DW (2003) Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 22(3):224–230. doi: 10.1007/s00299-003-0678-6 PubMedCrossRefGoogle Scholar
  13. Kasahara H, Hanada A, Kuzuyama T, Takagi M, Kamiya Y, Yamaguchi S (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277(47):45188–45194. doi: 10.1074/jbc.M208659200 PubMedCrossRefGoogle Scholar
  14. Kim MK, Lee BS, In JG, Sun H, Yoon JH, Yang DC (2006) Comparative analysis of expressed sequence tags (ESTs) of ginseng leaf. Plant Cell Rep 25(6):599–606. doi: 10.1007/s00299-005-0095-0 PubMedCrossRefGoogle Scholar
  15. Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S (2013) Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 14(1):245. doi: 10.1186/1471-2164-14-245 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Liang Y, Zhao S, Zhang X (2009) Antisense suppression of cycloartenol synthase results in elevated ginsenoside levels in Panax ginseng hairy Roots. Plant Mol Biol Rep 27(3):298–304CrossRefGoogle Scholar
  17. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28(1):87–99. doi: 10.1093/molbev/msq177 PubMedCrossRefGoogle Scholar
  18. Masse G, Belt ST, Rowland SJ, Rohmer M (2004) Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc Natl Acad Sci USA 101(13):4413–4418. doi: 10.1073/pnas.0400902101 PubMedCrossRefGoogle Scholar
  19. Ormeno E, Mevy JP, Vila B, Bousquet-Melou A, Greff S, Bonin G, Fernandez C (2007) Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 67(2):276–284. doi: 10.1016/j.chemosphere.2006.10.029 PubMedCrossRefGoogle Scholar
  20. Rodrígues-Concepción M, Gruissem W (1999) Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme. A reductase-independent lycopene accumulation. Plant Physiol 119:41–48. doi: 10.1104/pp.119.1.41 CrossRefGoogle Scholar
  21. Rodrígues-Concepción M, Fores O, Martinez-Garcia JF, Gonzalez V, Phillips MA, Ferrer A, Boronat A (2004) Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell 16(1):144–156. doi: 10.1105/tpc.016204 CrossRefGoogle Scholar
  22. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang D (2010a) Gene ontology study of methyl jasmonate-treated and non-treated hairy roots of Panax ginseng to identify genes involved in secondary metabolic pathway. Genetika 46(7):932–939PubMedGoogle Scholar
  23. Sathiyamoorthy S, In JG, Gayathri S, Kim YJ, Yang DC (2010b) Generation and gene ontology based analysis of expressed sequence tags (EST) from a Panax ginseng C. A. Meyer roots. Mol Biol Rep 37(7):3465–3472. doi: 10.1007/s11033-009-9938-z PubMedCrossRefGoogle Scholar
  24. Sato Y, Ito Y, Okada S, Murakami M, Abe H (2003) Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of Botryococcus braunii via the non-mevalonate pathway. Tetrahedron Lett 44(37):7035–7037. doi: 10.1016/S0040-4039(03)01784-2 CrossRefGoogle Scholar
  25. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108PubMedCrossRefGoogle Scholar
  26. Skorupinska-Tudek K, Poznanski J, Wojcik J, Bienkowski T, Szostkiewicz I, Zelman-Femiak M, Bajda A, Chojnacki T, Olszowska O, Grunler J, Meyer O, Rohmer M, Danikiewicz W, Swiezewska E (2008) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of dolichols in plants. J Biol Chem 283(30):21024–21035. doi: 10.1074/jbc.M706069200 PubMedCrossRefGoogle Scholar
  27. Sreedhara Swamy KH, Sirsi M, Ramananda Rao GR (1974) Studies on the mechanism of action of miconazole: effect of miconazole on respiration and cell permeability of Candida albicans. Antimicrob Agents Chemother 5(4):420–425PubMedCrossRefGoogle Scholar
  28. Suzuki M, Nakagawa S, Kamide Y, Kobayashi K, Ohyama K, Hashinokuchi H, Kiuchi R, Saito K, Muranaka T, Nagata N (2009) Complete blockage of the mevalonate pathway results in male gametophyte lethality. J Exp Bot 60(7):2055–2064. doi: 10.1093/jxb/erp073 PubMedCrossRefGoogle Scholar
  29. Talano MA, Oller AL, Gonzalez PS, Agostini E (2012) Hairy roots, their multiple applications and recent patents. Recent Pat Biotechnol 6(2):115–133PubMedCrossRefGoogle Scholar
  30. Towler M, Weathers P (2007) Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep 26(12):2129–2136. doi: 10.1007/s00299-007-0420-x PubMedCrossRefGoogle Scholar
  31. Gao YY, Qiu AY, Pan QQ (2001) The analysis of phytosterols. China Oils Fats 26(1):25–28Google Scholar
  32. Zarn JA, Bruschweiler BJ, Schlatter JR (2003) Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ Health Perspect 111(3):255–261PubMedCentralPubMedCrossRefGoogle Scholar
  33. Zeidler J, Lichtenthaler HK (2001) Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation. Planta 213(2):323–326PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shoujing Zhao
    • 1
  • Le Wang
    • 1
  • Li Liu
    • 1
  • Yanlong Liang
    • 1
  • Yao Sun
    • 1
  • Jianjun Wu
    • 1
  1. 1.College of Biological and Agricultural EngineeringJilin UniversityChangchunChina

Personalised recommendations