Plant Cell Reports

, Volume 32, Issue 12, pp 1939–1952 | Cite as

Comprehensive hormone profiling of the developing seeds of four grain legumes

  • Susan M. H. Slater
  • Hai Ying Yuan
  • Monika M. Lulsdorf
  • Albert Vandenberg
  • L. Irina Zaharia
  • Xiumei Han
  • Suzanne R. Abrams
Original Paper

Abstract

Key message

Developmental context and species-specific hormone requirements are of key importance in the advancement of in vitro protocols and manipulation of seed development.

Abstract

Improvement of in vitro tissue and cell culture protocols in grain legumes such as embryo rescue, interspecific hybridization, and androgenesis requires an understanding of the types, activity, and balance of hormones within developing seeds. Towards this goal, the concentration of auxin, cytokinin, gibberellin, and abscisic acid (ABA) and their precursors and derivatives were measured in the developing seeds of field pea (Pisum sativum L.), chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), and faba bean (Vicia faba L.) from 4 days after anthesis until 8 days after reaching maximum fresh weight. The importance of developmental context (developmental time and space) is demonstrated in both the differences and similarities between species for hormone profiles, especially with regard to cytokinin and ABA biosynthesis during the embryo formation. Auxin and its conjugates are significant during the pattern formation stage of all legumes; however, IAA-Asparagine appears important in the Vicieae species and its concentrations are greater than IAA from the globular stage of embryo development on in multi-seed fruits. Finally, the significance of non-polar gibberellins during lentil seed development is highlighted.

Keywords

Abscisic acid Auxin Chickpea Cytokinin Seed development Faba bean Field pea Gibberellin Lentil 

Supplementary material

299_2013_1505_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 34 kb)

References

  1. Alabadi D, Blázquez MA, Carbonell J, Ferrándiz C, Pérez-Amador MA (2009) Instructive roles for hormones in plant development. Int J Dev Biol 53:1597–1608PubMedCrossRefGoogle Scholar
  2. Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochem 70:957–969CrossRefGoogle Scholar
  3. Braybrook SA, Harada JJ (2008) LECs go crazy in embryo development. Trends Plant Sci 13:624–630PubMedCrossRefGoogle Scholar
  4. Campanella JJ, Smith SM, Leibu D, Wexler S, Ludwig-Muller J (2008) The auxin conjugate hydrolase family of Medicago truncatula and their expression during the interaction with two symbionts. J Plant Growth Regul 27:26–38Google Scholar
  5. Chiwocha SDS, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross ARS, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 3:405–417CrossRefGoogle Scholar
  6. Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48PubMedCrossRefGoogle Scholar
  7. Clarke HJ, Wilson JG, Kuo I, Lulsdorf MM, Mallifkarjuna N, Kuo J, Siddique KHM (2006) Embryo rescue and plant regeneration in vitro of selfed chickpea (Cicer arietinum L.) and its wild annual relatives. Plant Cell Tissue Organ Cult 85:197–204CrossRefGoogle Scholar
  8. Croser JS, Lulsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006) Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. CRC Crit Rev Plant Sci 25:139–157CrossRefGoogle Scholar
  9. Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332PubMedCrossRefGoogle Scholar
  10. Emery RJN, Leport L, Barton JE, Turner NC, Atkins CA (1998) cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol 117:1515–1523PubMedCrossRefGoogle Scholar
  11. Emery RJN, Ma Q, Atkins CA (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123:1593–1604PubMedCrossRefGoogle Scholar
  12. Engvild KC, Egsgaard H, Larsen E (1981) Determination of 4-chloroindoleacetic acid methyl ester in Viciae species by gas chromatography-mass spectrometry. Physiol Plant 53:79–81CrossRefGoogle Scholar
  13. Environment Canada (2013) National climate data and information archive—Saskatoon, Government of Canada http://www.climate.weatheroffice.gc.ca/climateData/dailydata_e.html?timeframe=4&Prov=SK&StationID=47707&Month=6&Day=5&Year=2012
  14. Hampson CR, Reaney MJT, Abrams GD, Abrams SR, Gusta LV (1992) Metabolism of (+)-Abscisic acid to (+)-7′-hydroxyabscisic acid by bromegrass cell cultures. Phytochemistry 31:2645–2648CrossRefGoogle Scholar
  15. Hwang I, Sheen J, Muller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380PubMedCrossRefGoogle Scholar
  16. Jadhav AS, Taylor DC, Giblin M, Ferrie AMR, Ambrose SJ, Ross ARS, Nelson KM, Zaharia LI, Sharma N, Anderson M, Fobert PR, Abrams SR (2008) Hormonal regulation of oil accumulation in brassica seeds: metabolism and biological activity of ABA, 7′-, 8′- and 9′-hydroxy ABA in microspore derived embryos of B. napus. Phytochemistry 69:2678–2688Google Scholar
  17. Jenik PD, Barton MK (2005) Surge and destroy: the role of auxin in plant embryogenesis. Development 132(16):3577–3585PubMedCrossRefGoogle Scholar
  18. Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams S, Kamiya Y, Seo M (2010) Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol 51(12):1988–2001PubMedCrossRefGoogle Scholar
  19. Kieber JJ, Schaller GE (2010) The perception of cytokinin: a story 50 years in the making. Plant Physiol 154:487–492PubMedCrossRefGoogle Scholar
  20. Liu B, Liu X, Wang C, Jin J, Herbert SJ (2010) Endogenous hormones in seed, leaf, and pod wall and their relationship to seed filling in soybeans. Crop Pasture Sci 61:103–110CrossRefGoogle Scholar
  21. Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, Sandberg G (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 49:249–272PubMedCrossRefGoogle Scholar
  22. Ludwig-Muller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773PubMedCrossRefGoogle Scholar
  23. Lulsdorf MM, Yuan HY, Slater SMH, Vandenberg A, Han X, Zaharia LI, Abrams SR (2013) Endogenous hormone profiles during early seed development of C. arietinum and C. anatolicum. Plant Growth Regul. http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s10725-013-9819-2
  24. Magnus V, Ozga JA, Reinecke DM, Pierson GL, Larue TA, Cohen JD, Brenner ML (1997) 4-Chloroindole-3-acetic acid and indole-3-acetic acid in Pisum sativum. Phytochemistry 46:675–681CrossRefGoogle Scholar
  25. Menendez V, Revilla MA, Fal MA, Fernandez H (2009) The effect of cytokinins on growth and sexual organ development in the gametophyte of Blechnum spicant L. Plant Cell Tiss Organ Cult 96:245–250CrossRefGoogle Scholar
  26. Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138PubMedCrossRefGoogle Scholar
  27. Nadeau CD, Ozga JA, Kurepin LV, Jin A, Pharis RP, Reinecke DM (2011) Tissue-specific regulation of gibberellin biosynthesis in developing pea seeds. Plant Physiol 156:897–912PubMedCrossRefGoogle Scholar
  28. Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8:213–217PubMedCrossRefGoogle Scholar
  29. Oetiker JH, Aeschbacher G (1997) Temperature-sensitive plant cells with shunted indole-3-acetic acid conjugation. Plant Physiol 114:1385–1395PubMedGoogle Scholar
  30. Ostrowski M, Jakubowska A (2011) Purification and biochemical characterization of indole-3-acetyl-aspartic acid synthetase from immature seeds of pea (Pisum sativum). J Plant Growth Regul 30:30–40CrossRefGoogle Scholar
  31. Ozga JA, Reinecke DM, Ayele BT, Ngo P, Nadeau C, Wickramarathna AD (2009) Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol 150:448–462PubMedCrossRefGoogle Scholar
  32. Park S, Ozga JA, Cohen JD, Reinecke DM (2010) Evidence of 4-Cl-IAA and IAA bound to proteins in pea fruit and seeds. J Plant Growth Regul 29:184–193CrossRefGoogle Scholar
  33. Pinto DLP, de Almeida AMR, Rego MM, da Silva ML, de Oliveira EJ, Otoni WC (2011) Somatic embryogenesis from mature zygotic embryos of commercial passionfruit (Passiflora edulis Sims) genotypes. Plant Cell Tiss Organ Cult 107:521–530CrossRefGoogle Scholar
  34. Powell AF, Paleczny AR, Olechowski H, Emery RJ (2013) Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown cultivars. Plant Physiol Biochem 64:33–40PubMedCrossRefGoogle Scholar
  35. Quesnelle PE, Emery RJN (2007) cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can J Bot 85:91–103CrossRefGoogle Scholar
  36. Reinecke D (1999) 4-Chloroindole-3-acetic acid and plant growth. Plant Growth Reg 27:3–13CrossRefGoogle Scholar
  37. Reinecke DM, Ozga JA, Magnus V (1995) Effect of halogen substitution of indole-3-acetic acid on biological activity in pea fruit. Phytochemistry 40:1361–1366CrossRefGoogle Scholar
  38. Rijavec T, Jain M, Dermastia M, Chourey PS (2011) Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize. Ann Bot 107:1235–1245PubMedCrossRefGoogle Scholar
  39. Rodrigo MJ, Garcia-Martinez JL, Santes CM, Gaskin P, Hedden P (1997) The role of gibberellins A1 and A3 in fruit growth of Pisum sativum L. and the identification of gibberellins A4 and A7 in young seeds. Planta 201:446–455CrossRefGoogle Scholar
  40. Rosquete MR, Barbez E, Kleine-Vehn J (2012) Cellular auxin homeostasis: gatekeeping is housekeeping. Mol Plant 5:772–786PubMedCrossRefGoogle Scholar
  41. Sakakibara H (2006) Cytokinins: activity biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449PubMedCrossRefGoogle Scholar
  42. Sasaki K, Shimomura K, Kamada H, Harada H (1994) IAA metabolism in embryogenic and non-embryogenic carrot cells. Plant Cell Physiol 35:1159–1164Google Scholar
  43. Simon S, Petrasek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460PubMedCrossRefGoogle Scholar
  44. Singh DP, Filardo FF, Storey R, Jermakow AM, Yamajuchi S, Swain SM (2010) Overexpression of a gibberellin inactivation gene alters seed development, KNOX gene expression, and plant development in Arabidopsis. Physiol Plant 138:74–90PubMedCrossRefGoogle Scholar
  45. Steele KP, Wojciechowski MF (2003) Phylogenetic analyses of tribes Trifolieae and Vicieae, based on sequences of the plastid gene, matK (Papilionoideae: Leguminosae). In: Klitgaard BB, Bruneau A (eds) Advances in legume systematic, part 10, higher level systematics. Royal Botanic Gardens, Kew, pp 355–370Google Scholar
  46. Swain SM, Singh DP (2005) Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends Plant Sci 10:123–129Google Scholar
  47. Tam YY, Epstein E, Normanly J (2000) Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol 123:589–595PubMedCrossRefGoogle Scholar
  48. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859PubMedCrossRefGoogle Scholar
  49. Toker C, Ulger S, Karhan M, Canci H, Akdesir O, Ertoy N, Cagirgan MI (2005) Comparison of some endogenous hormone levels in different parts of chickpea (Cicer arietinum L.). Genet Resour Crop Evol 52:233–237CrossRefGoogle Scholar
  50. Toker C, Ulger S, Cagirgan MI (2006) Endogenous hormone variations in annual wild Cicer species. Genet Resour Crop Evol 53:171–177CrossRefGoogle Scholar
  51. Van Daele I, Gonzalez N, Vercautern I, de Smet L, Inze D, Roldan-Ruiz I, Vuylsteke M (2010) A comparative study of seed yield parameters in Arabidopsis thaliana mutants and transgenics. Plant Biotechnol J 10:488–500CrossRefGoogle Scholar
  52. Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279PubMedCrossRefGoogle Scholar
  53. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251PubMedCrossRefGoogle Scholar
  54. Zaharia LI, Galka MM, Ambrose SJ, Abrams SR (2005) Preparation of deuterated abscisic acid metabolites for use in mass spectrometry and feeding studies. J Label Cmpd Radiopharm 48:435–445CrossRefGoogle Scholar
  55. Zeevaart JAD (2003) Regulators of growth: abscisic acid. In: Thomas B (ed) Encyclopedia of applied plant sciences. Elsevier Ltd, Oxford, pp 995–999Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susan M. H. Slater
    • 1
  • Hai Ying Yuan
    • 1
  • Monika M. Lulsdorf
    • 1
  • Albert Vandenberg
    • 1
  • L. Irina Zaharia
    • 2
  • Xiumei Han
    • 2
  • Suzanne R. Abrams
    • 3
  1. 1.Crop Development Centre (CDC)University of SaskatchewanSaskatoonCanada
  2. 2.National Research Council of Canada-Saskatoon (NRCC-SK)SaskatoonCanada
  3. 3.Saskatchewan Structural Sciences CentreUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations