Advertisement

Plant Cell Reports

, Volume 32, Issue 7, pp 1085–1098 | Cite as

Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses

  • Angelo Santino
  • Marco Taurino
  • Stefania De Domenico
  • Stefania Bonsegna
  • Palmiro Poltronieri
  • Victoria Pastor
  • Victor Flors
Review

Abstract

Plants frequently live in environments characterized by the presence of simultaneous and different stresses. The intricate and finely tuned molecular mechanisms activated by plants in response to abiotic and biotic environmental factors are not well understood, and less is known about the integrative signals and convergence points activated by plants in response to multiple (a)biotic stresses. Phytohormones play a key role in plant development and response to (a)biotic stresses. Among these, one of the most important signaling molecules is an oxylipin, the plant hormone jasmonic acid. Oxylipins are derived from oxygenation of polyunsaturated fatty acids. Jasmonic acid and its volatile derivative methyl jasmonate have been considered for a long time to be the bioactive forms due to their physiological effects and abundance in the plant. However, more recent studies showed unambiguously that they are only precursors of the active forms represented by some amino acid conjugates. Upon developmental or environmental stimuli, jasmonates are synthesized and accumulate transiently. Upon perception, jasmonate signal transduction process is finely tuned by a complex mechanism comprising specific repressor proteins which in turn control a number of transcription factors regulating the expression of jasmonate responsive genes. We discuss the latest discoveries about the role of jasmonates in plants resistance mechanism against biotic and abiotic stresses. Finally, the deep interplay of different phytohormones in stresses signaling will be also discussed.

Keywords

Abiotic stresses Biotic stresses Hormones signaling Jasmonates Transcription factors 

Notes

Acknowledgments

Stefania Bonsegna was supported by a grant in the context of the ABSTRESS project (project number: FP7-KBBE-2011-5-289562).

References

  1. Abdala G, Miersch O, Kramell R, Vigliocco A, Agostini E, Forchetti G, Alemano S (2003) Jasmonate and octadecanoid occurrence in tomato hairy roots. Endogenous level changes in response to NaCl. J Plant Growth Regul 40:21–27CrossRefGoogle Scholar
  2. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78PubMedCrossRefGoogle Scholar
  3. Adie B, Perez-Perez J, Perez-Perez MM, Godoy M, Sanchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681PubMedCrossRefGoogle Scholar
  4. Ahmad S, Van Hulten M, Martin J, Pieterse CM, Van Wees SC, Ton J (2011) Genetic dissection of basal defence responsiveness in accessions of Arabidopsis thaliana. Plant, Cell Environ 34:1191–1206CrossRefGoogle Scholar
  5. Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of Citrus responses to flooding. J Plant Growth Regul 27:241–250CrossRefGoogle Scholar
  6. Arbona V, Argamasilla R, Gómez-Cadenas A (2010) Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. J Plant Physiol 167:1342–1350PubMedCrossRefGoogle Scholar
  7. Atkinson NJ, Urwin E (2012) The integration of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. doi: 10.1093/jxb/ers100 Google Scholar
  8. Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: beta-oxidation in signalling and development. Trends Plant Sci 11:124–132PubMedCrossRefGoogle Scholar
  9. Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318PubMedCrossRefGoogle Scholar
  10. Bannenberg G, Martínez M, Hamberg M, Castresana C (2009) Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85–89PubMedCrossRefGoogle Scholar
  11. Beckers GJM, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8:1–10PubMedCrossRefGoogle Scholar
  12. Bell E, Mullet JE (1993) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103:1133–1137PubMedCrossRefGoogle Scholar
  13. Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32PubMedCrossRefGoogle Scholar
  14. Bodenhausen N, Reymond P (2007) Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol Plant Microbe Interact 20:1406–1420PubMedCrossRefGoogle Scholar
  15. Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030PubMedCrossRefGoogle Scholar
  16. Böttcher C, Pollmann S (2009) Plant oxylipins: plant responses to 12-oxo-phytodienoic acid are governed by its specific structural and functional properties. FEBS J 276:4693–4704PubMedCrossRefGoogle Scholar
  17. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Responses to abiotic stresses. Am Soc Plant Physiol, Rockville, pp 1158–1249Google Scholar
  18. Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032PubMedCrossRefGoogle Scholar
  19. Browse J (2005) Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72:431–456PubMedCrossRefGoogle Scholar
  20. Browse J (2009) Jasmonate passes muster: a receptor and targets for the defence hormone. Annu Rev Plant Biol 60:183–205PubMedCrossRefGoogle Scholar
  21. Caldelari D, Wang G, Farmer EE, Dong X (2011) Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol Biol 75:25–33PubMedCrossRefGoogle Scholar
  22. Camañes G, Pastor V, Cerezo M, García-Andrade J, Vicedo B, García-Agustín P, Flors V (2012) A deletion in NRT2.1 attenutes Pseudomonas syringae-induced hormonal perturbation, resulting in primed plant defences. Plant Phys 158:1054–1066CrossRefGoogle Scholar
  23. Cao S, Zheng Y, Wang K, Jin P, Rui H (2009) Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chem 115:1458–1463CrossRefGoogle Scholar
  24. Castillo MC, León J (2008) Expression of the beta-oxidation gene 3-ketoacyl-CoA thiolase 2 (KAT2) is required for the timely onset of natural and dark-induced leaf senescence in Arabidopsis. J Exp Bot 59:2171–2179PubMedCrossRefGoogle Scholar
  25. Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5(3):e1000440PubMedCrossRefGoogle Scholar
  26. Cheng Z, Sun L, Qi T, Zhang B, Peng W, Liu Y, Xie D (2011) The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis. Mol Plant 4:279–288PubMedCrossRefGoogle Scholar
  27. Chico JM, Chini A, Fonseca S, Solano R (2008) JAZ repressors set the rhythm in jasmonate signaling. Curr Opin Plant Biol 11:486–494PubMedCrossRefGoogle Scholar
  28. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671PubMedCrossRefGoogle Scholar
  29. Chini A, Fonseca SM CJ, Fernandez-Calvo P, Solano R (2009a) The ZIM domain mediates homoand heteromeric interactions between Arabidopsis JAZ proteins. Plant J 59:77–81PubMedCrossRefGoogle Scholar
  30. Chini A, Boter M, Solano R (2009b) COI1/JAZs/MYC2: the core JA-signaling module. FEBS Lett 276:4682–4692Google Scholar
  31. Chung HS, Niu Y, Browse J, Howe GA (2009) Top hits in contemporary JAZ: an update on jasmonate signaling. Phytochem 70:1547–1559CrossRefGoogle Scholar
  32. Coego A, Ramirez V, Gil MJ, Flors V, Mauch-Mani B, Vera P (2005) An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Plant Cell 17:2123–2137PubMedCrossRefGoogle Scholar
  33. Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46:521–529PubMedCrossRefGoogle Scholar
  34. Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071PubMedCrossRefGoogle Scholar
  35. Costa CL, Arruda P, Benedetti CE (2000) An Arabidopsis gene induced by wounding functionally homologous to flavoprotein oxidoreductases. Plant Mol Biol 44:61–71PubMedCrossRefGoogle Scholar
  36. Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119PubMedCrossRefGoogle Scholar
  37. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381PubMedCrossRefGoogle Scholar
  38. De Domenico S, Bonsegna S, Horres R, Pastor V, Taurino M, Poltronieri P, Imtiaz M, Kahl G, Flors V, Winter P, Santino A (2012) Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. Plant Physiol Biochem 61:115–122PubMedCrossRefGoogle Scholar
  39. Dechorgnat J, Patrit O, Krapp A, Fagard M, Daniel-Vedele F (2012) Characterization of the Nrt2.6 gene in Arabidopsis thaliana: a link with plant response to biotic and abiotic stress. PLoS ONE 7:e42491PubMedCrossRefGoogle Scholar
  40. Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reis JB, Fitt GP, Sewelan N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245PubMedCrossRefGoogle Scholar
  41. Durrant WE, Dong X (2004) Systemic acquired resistance. Ann Rev Phytopathol 42:185–209CrossRefGoogle Scholar
  42. Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785PubMedCrossRefGoogle Scholar
  43. Erb M, Glasuser G, Robert CAM (2012) Induced immunity against belowground insect herbivores-activation of defences in the absence of a jasmonate burst. J Chem Ecol 38:629–640PubMedCrossRefGoogle Scholar
  44. Farmer EE, Ryan CA (1992) Octadecanoid-derived signals in plants. Trends Cell Biol 2:236–241PubMedCrossRefGoogle Scholar
  45. Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM, Pauwels L, Witters E, Puga MI, Paz-Ares J, Goossens A, Reymond P, De Jaeger G, Solano R (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715PubMedCrossRefGoogle Scholar
  46. Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidospis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205PubMedCrossRefGoogle Scholar
  47. Feys B, Benedetti CE, Penfold CN, Turner JG (1994) Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759PubMedGoogle Scholar
  48. Fonseca S, Chini A, Hamberg M, Adie B, Kramell R, Miersch O, Wasternack C, Solano R (2009a) (+)-7-iso-Jasmonoyl-l-Isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350PubMedCrossRefGoogle Scholar
  49. Fonseca S, Chico JM, Solano R (2009b) The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr Opin Plant Biol 12:539–547PubMedCrossRefGoogle Scholar
  50. Footitt S, Dietrich D, Fait A, Fernie AR, Holdsworth MJ, Baker A, Theodoulou FL (2007) The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. Plant Physiol 144:1467–1480PubMedCrossRefGoogle Scholar
  51. Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824PubMedCrossRefGoogle Scholar
  52. Fujita M, Shinozaki Y, Shinozaki K (2009) Transcription factros involved in the crosstalk between abiotic and biotic stress signaling-networks. In: Yoshioka K, Shinozaki K (eds) Signal corsstalk in plant stress responses. Whiley-Blackwell, New York, pp 43–59CrossRefGoogle Scholar
  53. García-Andrade J, Ramírez V, Flors V, Vera P (2011) Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. Plant J 67:783–794PubMedCrossRefGoogle Scholar
  54. Geng X, Cheng J, Gangadharan A, MackeyD (2012) The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defence. Plant Cell. doi: 10.1105/tpc.112.105312
  55. Gfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate biochemical pathway. Sci Signal doi. doi: 10.1126/scisignal.3109cm3 Google Scholar
  56. Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  57. Gruber V, Blanchet S, Diet A, Zahaf O, Boualem A, Kakar K, Alunni B, Udvardi M, Frugier F, Crespi M (2009) Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Mol Genet Genomics 281:55–66PubMedCrossRefGoogle Scholar
  58. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol and Plant Mol Biol 51:463–499CrossRefGoogle Scholar
  59. Hause B, Stenzel I, Miersch O, Wasternack C (2003) Occurrence of the allene oxide cyclase in different organs and tissues of Arabidopsis thaliana. Phytochemistry 64:971–980PubMedCrossRefGoogle Scholar
  60. Hernández-Blanco C, Feng DX, Hu J (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19:890–903PubMedCrossRefGoogle Scholar
  61. Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ, Ko J, Park JY, Seo YS, Kim EY, Ryu SB, Kim WT, Lee YH, Kang H, Lee I (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell 14:183–192PubMedCrossRefGoogle Scholar
  62. Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209PubMedGoogle Scholar
  63. Ismail A, Riemann M, Nick P (2012) The jasmonate pathway mediates salt tolerance in grapevines. J Exp Bot 63:2127–2139PubMedCrossRefGoogle Scholar
  64. Jakab G, Ton J, Flors V, Zimmerli L, Métraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274PubMedCrossRefGoogle Scholar
  65. Jia C, Zhang L, Liu L, wang J, Li C, Wang Q (2012) Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. J Exp Bot. doi: 10.1093/jxb/ers360
  66. Jin P, Zheng Y, Tang S, Rui H, Wang CY (2009a) A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit. Postharvest Biol Technol 52:24–29CrossRefGoogle Scholar
  67. Jin P, Wang K, Shang H, Tong J, Zheng Y (2009b) Low-temperature conditioningcombined with methyl jasmonate treatment reduces chilling injury of peach fruit. J Sci Food Agricol 89:1690–1696CrossRefGoogle Scholar
  68. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105:7100–7105PubMedCrossRefGoogle Scholar
  69. Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468PubMedCrossRefGoogle Scholar
  70. Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31PubMedCrossRefGoogle Scholar
  71. Koda Y (1997) Possible involvement of jasmonates in various morphogenic events. Physiol Plant 100:639–646CrossRefGoogle Scholar
  72. Koda Y, Takahashi K, Kikuta I (1992) Potato tuber inducing activities of salicylic acid and related compounds. Journal of Plant Growth and Regulation 11:215–219CrossRefGoogle Scholar
  73. Koo AJ, Howe GA (2007) Role of peroxisomal beta-oxidation in the production of plant signalling compounds. Plant Signal Behav 2:20–22PubMedCrossRefGoogle Scholar
  74. Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the “oxylipin signature” in stressed barley leaves. Implications for different signalling pathways. Plant Physiol 123:177–187PubMedCrossRefGoogle Scholar
  75. Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Cuéllar Perez A, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MCE, Thevelein JM, Maaheimo H, Oksman-Caldentey KM, Rodriguez PL, Rischer H, Goossens A (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. PNAS 108:5891–5896PubMedCrossRefGoogle Scholar
  76. Laudert D, Weiler EW (1998) Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J 15:675–684PubMedCrossRefGoogle Scholar
  77. Laudert D, Pfannschmidt U, Lottspeich F, Holländer-Czytko H, Weiler EW (1996) Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol Biol 31:323–335PubMedCrossRefGoogle Scholar
  78. Lee TM, Lur HS, Chu C (1997) Role of abscisic acid in chilling tolerance of rice (Oryza sativa L.) seedlings: II. Modulation of free polyamine levels. Plant Sci 126:1–10CrossRefGoogle Scholar
  79. Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim W (2004) The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol 55:61–81PubMedCrossRefGoogle Scholar
  80. Long JA, Woody S, Poethig S, Meyerowitz EM, Barton MK (2002) Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development 129:2797–2806PubMedGoogle Scholar
  81. Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523PubMedCrossRefGoogle Scholar
  82. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178PubMedCrossRefGoogle Scholar
  83. Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 Encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950PubMedCrossRefGoogle Scholar
  84. MacGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signalling and disease resistance identified via genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959CrossRefGoogle Scholar
  85. Mahouachi J, Arbona V, Gómez-Cadenas A (2007) Hormonal changes in papaya seedlings subjected to progressive water stress and re-watering. Plant Growth Regul 53:43–51CrossRefGoogle Scholar
  86. Mandaokar A, Browse J (2009) MYB108 Acts Together with MYB24 to Regulate Jasmonate-Mediated Stamen Maturation in Arabidopsis. Plant Physiol 149:851–862PubMedCrossRefGoogle Scholar
  87. Mandaokar A, Kumar VD, Amway M, Browse J (2003) Microarray and differential display identify genes involved in jasmonate-dependent anther development. Plant Mol Biol 52(4):775–786PubMedCrossRefGoogle Scholar
  88. Mandaokar A, Thines B, Shin B, Lange BM, Choi G, Koo YJ, Yoo YJ, Choi YD, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46:984–1008PubMedCrossRefGoogle Scholar
  89. Mauch-Mani B, Flors V (2009) The ATAF1 transcription factor: at the convergence point of ABA-dependent plant defense against biotic and abiotic stresses. Cell Res 19:1322–1323PubMedCrossRefGoogle Scholar
  90. McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8(3):403–416PubMedGoogle Scholar
  91. Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol 101:441–450PubMedCrossRefGoogle Scholar
  92. Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochem 70:1560–1570CrossRefGoogle Scholar
  93. Miersch O, Wasternack C (2000) Octadecanoid and jasmonate signalling in tomato (Lycopersicon esculentum Mill.) leaves: endogenous jasmonates do not induce jasmonate biosynthesis. Biol Chem 381: 751-722Google Scholar
  94. Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443–462PubMedCrossRefGoogle Scholar
  95. Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/ET-mediated defense against Botrytis cinerea in Arabidopsis. PLoS ONE 7:e35995PubMedCrossRefGoogle Scholar
  96. Mueller MJ (1997) Enzymes involved in jasmonic acid biosynthesis. Physiol Plant 100:653–663CrossRefGoogle Scholar
  97. Mueller MJ, Brodschelm W, Spannagl E, Zenk MH (1993) Signalling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90:7490–7494PubMedCrossRefGoogle Scholar
  98. Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18:650–655PubMedCrossRefGoogle Scholar
  99. Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and supresses JA-responsive PDF1.2 transcription. Plant J. 50:128–139PubMedCrossRefGoogle Scholar
  100. Niu Y, Figueroa P, Browse J (2011) Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis. J Exp Bot 62:2143–2154PubMedCrossRefGoogle Scholar
  101. Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046PubMedGoogle Scholar
  102. Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R (2002) A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant J 31:1–12PubMedCrossRefGoogle Scholar
  103. Parthier B (1991) Jasmonates, new regulators of plant growth and development: many facts and few hypotheses on their actions. Botanica Acta 104:446–454Google Scholar
  104. Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2012) Primed plants do not forget. Environ Exp Bot. doi: 10.1016/envexpbot.2012.02.013 Google Scholar
  105. Pastori GM, Foyer CH (2002) Common components, networks and pathways of cross-tolerance to stress. The central role of ‘redox’ and abscisic-acid-mediated controls. Plant Physiol 129:460–468PubMedCrossRefGoogle Scholar
  106. Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100PubMedCrossRefGoogle Scholar
  107. Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inze D, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 105:1380–1385PubMedCrossRefGoogle Scholar
  108. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791PubMedCrossRefGoogle Scholar
  109. Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158CrossRefGoogle Scholar
  110. Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, Xie D (2011) The Jasmonate-ZIM-Domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1798–1814Google Scholar
  111. Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY et al (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863PubMedCrossRefGoogle Scholar
  112. Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid duringprogrammed cell death, defence and leaf senescence. FEBS J 276:4666–4681PubMedCrossRefGoogle Scholar
  113. Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30PubMedCrossRefGoogle Scholar
  114. Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12(7):1041–1061PubMedGoogle Scholar
  115. Sayyari M, Babalar M, Kalantari S, Martínez-Romero D, Guillén F, Serrano M, Valero D (2011) Vapour treatments with methyl salicylate or methyl jasmonate alleviated chilling injury and enhanced antioxidant potential during postharvest storage of pomegranates. Food Chem 124:964–970CrossRefGoogle Scholar
  116. Schaller F, Weiler EW (1997) Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thaliana. Structural and functional relationship to yeast old yellow enzyme. J Biol Chem 272:28066–28072PubMedCrossRefGoogle Scholar
  117. Schaller F, Hennig P, Weiler EW (1998) 12-Oxophytodienoate-10,11-reductase: occurrence of two of different specificity against stereoisomers of 12-oxophytodienoic acid. Plant Physiol 118:1345–1351PubMedCrossRefGoogle Scholar
  118. Schaller F, Biesgen C, Müssig C, Altmann T, Weiler EW (1999) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979–984CrossRefGoogle Scholar
  119. Schilmiller AL, Koo AJ, Howe GA (2007) Functional diversification of acyl-coenzyme A oxidases in jasmonic acid biosynthesis and action. Plant Physiol 143:812–844PubMedCrossRefGoogle Scholar
  120. Sembdner G, Parthier B (1993) The biochemistry and the physiologicaland molecular actions of jasmonates. Annual Review of PlantPhysiology and Plant Molecular Biology 44:569–589CrossRefGoogle Scholar
  121. Serrano R, Mulet JM, Rios G, Marquez JA, de Larriona IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R et al (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036Google Scholar
  122. Shi Y, An L, Li X, Huang C, Chen G (2011) The octadecanoid signaling pathway participates in the chilling-induced transcription of ω-3 fatty acid desaturases in Arabidopsis. Plant Physiol Biochem 49:208–215PubMedCrossRefGoogle Scholar
  123. Shin J, Heidrich K, Sanchez-Villarreal A, Parker JE, Davis SJ (2012) TIME FOR COFFE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell 24:2470–2482PubMedCrossRefGoogle Scholar
  124. Song S, Qi T, Huang H, Ren Q, Wu D, Chang C, Peng W, Liu Y, Peng J, Xie D (2011) The Jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect Jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23(3):1000–1013PubMedCrossRefGoogle Scholar
  125. Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. PNAS 104:18842–18847PubMedCrossRefGoogle Scholar
  126. Staswick PE (2008) JAZing up jasmonate signaling. Trends Plant Sci 13:66–71PubMedCrossRefGoogle Scholar
  127. Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127PubMedCrossRefGoogle Scholar
  128. Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci USA 97:10625–10630PubMedCrossRefGoogle Scholar
  129. Strassner J, Schaller F, Frick UB, Howe GA, Weiler EW, Amrhein N, Macheroux P, Schaller A (2002) Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J 32:585–601PubMedCrossRefGoogle Scholar
  130. Suza WP, Rowe ML, Hamberg M, Staswick PE (2010) A tomato enzyme synthesizes (+)-7-isojasmonoyl-l-isoleucine in wounded leaves. Planta 231:717–728PubMedCrossRefGoogle Scholar
  131. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386PubMedCrossRefGoogle Scholar
  132. Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227:517–526PubMedCrossRefGoogle Scholar
  133. Thatcher LF, Manners J, Kazan K (2009) Fusarium oxysporum hijacks COI1-medianted jasmonate signaling to promote disease development in Arabidopsis. Plant J. 58:927–939PubMedCrossRefGoogle Scholar
  134. Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A, Larson TR, Graham IA (2005) Jasmonic acid levels are reduced in COMATOSE ATP-Binding Cassette Transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840PubMedCrossRefGoogle Scholar
  135. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448:661–665PubMedCrossRefGoogle Scholar
  136. Ton J, Mauch-Mani B (2004) Beta-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130PubMedCrossRefGoogle Scholar
  137. Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. PNAS 104:1075–1080PubMedCrossRefGoogle Scholar
  138. Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2008) The phytotoxine coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 20:955–965CrossRefGoogle Scholar
  139. van Dam NM (2009) How plants cope with biotic interactions. Plant Biol 11:1–5PubMedGoogle Scholar
  140. Verhage A, van Wees SC, Pieterse CM (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154:536–540PubMedCrossRefGoogle Scholar
  141. Verhage A, Vlaardingerbroek I, Raaymakers C, Van Dam NM, Dicke M, Van Wees SCM, Pieterse CMJ (2011) Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Front Plant Microbe Interact 2. doi: 10.3389/fpls.2011.00047
  142. Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111:470–477PubMedCrossRefGoogle Scholar
  143. Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J (1998) A role for jasmonate in pathogen defense of Arabidopsis. PNAS 95:7209–7214PubMedCrossRefGoogle Scholar
  144. Voelckel C, Baldwin IT (2004) Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J 38:650–663PubMedCrossRefGoogle Scholar
  145. von Malek B, van der Graaff E, Schneitz K, Keller B (2002) The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta 216:187–192CrossRefGoogle Scholar
  146. Wager A, Browse J (2012) Social network: JAZ protein interactions expand ourknowledge of jasmonate signalling. Front Plant Sci doi.  10.3389/fpls.2012.00041 Google Scholar
  147. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot (Lond) 100:681–697CrossRefGoogle Scholar
  148. Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221PubMedCrossRefGoogle Scholar
  149. Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478PubMedCrossRefGoogle Scholar
  150. Woldemariam MG, Onkokesung N, Baldwin IT, Galis I (2012) Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-l-isoleucine levels and attenuates plant defenses against herbivores. Plant J 72:758–767PubMedCrossRefGoogle Scholar
  151. Wu Y, Deng Z, Lai J et al (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290PubMedCrossRefGoogle Scholar
  152. Xue R, Zhang B (2007) Increased endogenous methyl jasmonate altered leaf and root development in transgenic soybeanplants. Journal of Genetics and Genomics 34:339–346PubMedCrossRefGoogle Scholar
  153. Yadav V, Mallappa C, Grangappa SN, Bathia S, Chattopadhyay S (2005) A basic helix-loop-helix trassncription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17:1953–1966PubMedCrossRefGoogle Scholar
  154. Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M, Dubugnon L, Farmer EE (2007) A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–2483PubMedCrossRefGoogle Scholar
  155. Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136:1039–1048PubMedCrossRefGoogle Scholar
  156. Zander M, La Camera S, Lamotte O, Métraux JP, Gatz C (2010) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J 61:200–210PubMedCrossRefGoogle Scholar
  157. Zhang Y, Turner JG (2008) Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS ONE 3:e3699PubMedCrossRefGoogle Scholar
  158. Zhao IL, Wang JN, Shan W, Fan JG, Kuang JF, Wu KQ, Li XP, Chen WX, He FY, Chen JY, Lu WJ (2012) Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant, Cell Environ 36:30–51CrossRefGoogle Scholar
  159. Zheng X, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–596PubMedCrossRefGoogle Scholar
  160. Ziegler J, Stenzel I, Hause B, Mauche H, Hamberg M, Grimm R, Ganal M, Wasternack C (2000) Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275:19132–19138PubMedCrossRefGoogle Scholar
  161. Zimmerli L, Jakab G, Metraux JP, Mauch-Mani B (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proc Natl Acad Sci USA 97:12920–12925PubMedCrossRefGoogle Scholar
  162. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR: Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632PubMedCrossRefGoogle Scholar
  163. Zolman BK, Silva ID, Bartel B (2001) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. Plant Physiol 127:1266–1278PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Angelo Santino
    • 1
  • Marco Taurino
    • 1
  • Stefania De Domenico
    • 1
  • Stefania Bonsegna
    • 1
    • 2
  • Palmiro Poltronieri
    • 1
  • Victoria Pastor
    • 3
  • Victor Flors
    • 3
  1. 1.Institute of Sciences of Food Production C.N.R. Unit of LecceLecceItaly
  2. 2.BiotecgenLecceItaly
  3. 3.Dpto de Ciencias Agrarias y del Medio Natural, Universitat Jaume ICastellonSpain

Personalised recommendations