Plant Cell Reports

, Volume 32, Issue 7, pp 971–983 | Cite as

The root of ABA action in environmental stress response

  • Jing Han Hong
  • Seng Wee Seah
  • Jian XuEmail author


The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.


ABA Auxin Development Environmental stresses Hormonal interactions Root 



We apologize to colleagues whose works could not be cited due to space constraints. This work is supported by the National Research Foundation Singapore under its Competitive Research Programme (CRP Award No. NRF2010NRF-CRP002-018; J. Xu), National University of Singapore Young Investigator Award (J. Xu) and Ministry of Education of Singapore Academic Research Fund (Tier 2; MOE2012-T2-1-157; J. Xu), National University of Singapore President’s Graduate Fellowship (J.H. Hong) and National University of Singapore research scholarship (S.W. Seah).


  1. Ariel FD, Diet A, Crespi M, Chan RL (2010) The LOB-like transcription factor Mt LBD1 controls Medicago truncatula root architecture under salt stress. Plant Signal Behav 5:1666–1668CrossRefPubMedGoogle Scholar
  2. Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188–189:48–59. doi: 10.1016/j.plantsci.2012.03.001 CrossRefPubMedGoogle Scholar
  3. Bertrand A, Robitaille G, Castonguay Y, Nadeau P, Boutin R (1997) Changes in ABA and gene expression in cold-acclimated sugar maple. Tree Physiol 17:31–37CrossRefPubMedGoogle Scholar
  4. Bhaskara GB, Nguyen TT, Verslues P (2012) Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol. doi: 10.1104/pp.112.202408 PubMedGoogle Scholar
  5. Brady SM, Sarkar SF, Bonetta D, McCourt P (2003) The abscisic acid insensitive 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J 34:67–75CrossRefPubMedGoogle Scholar
  6. Brown LK, George TS, Thompson JA, Wright G, Lyon J, Dupuy L, Hubbard SF, White PJ (2012) What are the implications of variation in root hair length on tolerance to phosphorus deficiency in combination with water stress in barley (Hordeum vulgare)? Ann Bot 110:319–328. doi: 10.1093/aob/mcs085 CrossRefPubMedGoogle Scholar
  7. Cassab GI, Eapen D, Campos ME (2013) Root hydrotropism: an update. Am J Bot 100:14–24. doi: 10.3732/ajb.1200306 CrossRefPubMedGoogle Scholar
  8. Chen H, Li Z, Xiong L (2012) A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett 586:1742–1747. doi: 10.1016/j.febslet.2012.05.013 CrossRefPubMedGoogle Scholar
  9. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236. doi: 10.1093/jxb/erh005 CrossRefPubMedGoogle Scholar
  10. Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730CrossRefPubMedGoogle Scholar
  11. Choi Y, Lee Y, Kim SY, Hwang JU (2012) Arabidopsis ROP-interactive CRIB motif-containing protein 1 (RIC1) positively regulates auxin signaling and negatively regulates abscisic acid (ABA) signaling during root development. Plant Cell Environ. doi: 10.1111/pce.12028 PubMedGoogle Scholar
  12. Daie J, Campbell WF (1981) Response of tomato plants to stressful temperatures: increase in abscisic acid concentrations. Plant Physiol 67:26–29. doi: 10.1104/pp.67.1.26 CrossRefPubMedGoogle Scholar
  13. De Smet I, Signora L, Beeckman T, Inze D, Foyer CH, Zhang H (2003) An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis. Plant J 33:543–555CrossRefPubMedGoogle Scholar
  14. Deak KI, Malamy J (2005) Osmotic regulation of root system architecture. Plant J 43:17–28. doi: 10.1111/j.1365-313X.2005.02425.x CrossRefPubMedGoogle Scholar
  15. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945. doi: 10.1126/science.1153795 CrossRefPubMedGoogle Scholar
  16. Dixit AR, Dhankher OP (2011) A novel stress-associated protein ‘AtSAP10’ from Arabidopsis thaliana confers tolerance to nickel, manganese, zinc, and high temperature stress. PLoS one 6:e20921. doi: 10.1371/journal.pone.0020921 CrossRefPubMedGoogle Scholar
  17. Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot 63:6467–6480. doi: 10.1093/jxb/ers300 CrossRefPubMedGoogle Scholar
  18. Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell. doi: 10.1105/tpc.112.107227 PubMedGoogle Scholar
  19. Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI (2003) A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546. doi: 10.1104/pp.011841 CrossRefPubMedGoogle Scholar
  20. Fu Q, Li S, Yu D (2010) Identification of an Arabidopsis nodulin-related protein in heat stress. Mol Cells 29:77–84. doi: 10.1007/s10059-010-0005-3 CrossRefPubMedGoogle Scholar
  21. Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the solitary-root/IAA14 gene of Arabidopsis. Plant J 29:153–168CrossRefPubMedGoogle Scholar
  22. Furukawa J, Abe Y, Mizuno H, Matsuki K, Sagawa K, Kojima M, Sakakibara H, Iwai H, Satoh S (2011) Seasonal fluctuation of organic and inorganic components in xylem sap of Populus nigra. Plant Root 5:56–62CrossRefGoogle Scholar
  23. Galvan-Ampudia CS, Testerink C (2011) Salt stress signals shape the plant root. Curr Opin Plant Biol 14:296–302. doi: 10.1016/j.pbi.2011.03.019 CrossRefPubMedGoogle Scholar
  24. Goda H, Sasaki E, Akiyama K, Maruyama-Nakashita A, Nakabayashi K, Li W, Ogawa M, Yamauchi Y, Preston J, Aoki K, Kiba T, Takatsuto S, Fujioka S, Asami T, Nakano T, Kato H, Mizuno T, Sakakibara H, Yamaguchi S, Nambara E, Kamiya Y, Takahashi H, Hirai MY, Sakurai T, Shinozaki K, Saito K, Yoshida S, Shimada Y (2008) The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. Plant J 55:526–542. doi: 10.1111/j.0960-7412.2008.03510.x
  25. Guo D, Liang J, Qiao Y, Yan Y, Li L, Dai Y (2012) Involvement of G1-to-S transition and AhAUX-dependent auxin transport in abscisic acid-induced inhibition of lateral root primodia initiation in Arachis hypogaea L. J Plant Physiol 169:1102–1111. doi: 10.1016/j.jplph.2012.03.014 CrossRefPubMedGoogle Scholar
  26. Han W, Rong H, Zhang H, Wang MH (2009) Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana. Biochem Biophys Res Commun 378:695–700. doi: 10.1016/j.bbrc.2008.11.080 CrossRefPubMedGoogle Scholar
  27. Hao H, Jiang C, Shi L, Tang Y, Yao J, Li Z (2009) Effects of root temperature on thermostability of photosynthetic apparatus in Prunus mira seedlings. J Plant Ecol (Chin) 33:984–992Google Scholar
  28. He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, Gong Z (2012) DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 24:1815–1833. doi: 10.1105/tpc.112.098707 CrossRefPubMedGoogle Scholar
  29. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987. doi: 10.1007/s11033-011-0823-1 CrossRefPubMedGoogle Scholar
  30. Imai R, Ali A, Pramanik HR, Nakaminami K, Sentoku N, Kato H (2004) A distinctive class of spermidine synthase is involved in chilling response in rice. J Plant Physiol 161:883–886CrossRefPubMedGoogle Scholar
  31. Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384. doi: 10.1126/science.1164147 CrossRefGoogle Scholar
  32. Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949. doi: 10.1105/tpc.9.11.1935 PubMedGoogle Scholar
  33. Iyer-Pascuzzi AS, Jackson T, Cui H, Petricka JJ, Busch W, Tsukagoshi H, Benfey PN (2011) Cell identity regulators link development and stress responses in the Arabidopsis root. Dev Cell 21:770–782. doi: 10.1016/j.devcel.2011.09.009 CrossRefPubMedGoogle Scholar
  34. Jiang HW, Liu MJ, Chen IC, Huang CH, Chao LY, Hsieh HL (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol 154:1646–1658. doi: 10.1104/pp.110.159152 CrossRefPubMedGoogle Scholar
  35. Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150. doi: 10.1093/jxb/erl274 CrossRefPubMedGoogle Scholar
  36. Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409. doi: 10.1093/jxb/erq410 CrossRefPubMedGoogle Scholar
  37. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937. doi: 10.1016/j.devcel.2010.05.008 CrossRefPubMedGoogle Scholar
  38. Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695. doi: 10.1104/pp.010320 CrossRefPubMedGoogle Scholar
  39. Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138:882–897. doi: 10.1104/pp.105.062257 CrossRefPubMedGoogle Scholar
  40. Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153:716–727. doi: 10.1104/pp.110.154617 CrossRefPubMedGoogle Scholar
  41. Lee M, Jung JH, Han DY, Seo PJ, Park WJ, Park CM (2012) Activation of a flavin monooxygenase gene YUCCA7 enhances drought resistance in Arabidopsis. Planta 235:923–938. doi: 10.1007/s00425-011-1552-3 CrossRefPubMedGoogle Scholar
  42. Leung J, Merlot S, Giraudat J (1997) The Arabidopsis abscisic acid-insensitive2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9:759–771. doi: 10.1105/tpc.9.5.759 PubMedGoogle Scholar
  43. Li G, Xue HW (2007) Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295. doi: 10.1105/tpc.106.041426 Google Scholar
  44. Li KL, Bai X, Li Y, Cai H, Ji W, Tang LL, Wen YD, Zhu YM (2011) GsGASA1 mediated root growth inhibition in response to chronic cold stress is marked by the accumulation of DELLAs. J Plant Physiol 168:2153–2160. doi: 10.1016/j.jplph.2011.07.006 CrossRefPubMedGoogle Scholar
  45. Liu TX, Zhang ZS, Wamg JB, Li RQ (2009) Changes in abscisic acid immunolocalization in heat-stressed pepper seedlings. Pak J Bot 41:1173–1178Google Scholar
  46. Liu T, Zhang L, Yuan Z, Hu X, Lu M, Wang W, Wang Y (2012) Identification of proteins regulated by ABA in response to combined drought and heat stress in maize roots. Acta Physiol Plant 388:1–13. doi: 10.1007/s11738-012-1092-x Google Scholar
  47. Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160:1686–1697. doi: 10.1104/pp.112.208298 CrossRefPubMedGoogle Scholar
  48. Ma XF, Yu T, Wang LH, Shi X, Zheng LX, Wang MX, Yao YQ, Cai HJ (2010) Effects of water deficit at seedling stage on maize root development and anatomical structure. J Appl Ecol (Chin) 21:1731–1736Google Scholar
  49. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77CrossRefPubMedGoogle Scholar
  50. Malamy JE (2009) Lateral root formation. In: Beeckman T (ed) Annual plant reviews volume 37: root development. Wiley-Blackwell, Boston, pp 83–126. doi: 10.1002/9781444310023.ch4) Google Scholar
  51. McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Lauriere C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72:436–449. doi: 10.1111/j.1365-313X.2012.05089.x CrossRefPubMedGoogle Scholar
  52. Moriwaki T, Miyazawa Y, Takahashi H (2010) Transcriptome analysis of gene expression during the hydrotropic response in Arabidopsis seedlings. Environ Exp Bot 69:148–157. doi: 10.1016/j.envexpbot.2010.03.013 CrossRefGoogle Scholar
  53. Moriwaki T, Miyazawa Y, Fujii N, Takahashi H (2012a) Light and abscisic acid signaling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. Plant Cell Environ 35:1359–1368. doi: 10.1111/j.1365-3040.2012.02493.x CrossRefPubMedGoogle Scholar
  54. Moriwaki T, Miyazawa Y, Kobayashi A, Takahashi H (2012b) Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). Am J Bot. doi: 10.3732/ajb.1200419 PubMedGoogle Scholar
  55. Muday GK, Rahman A (2008) Auxin transport and the integration of gravitropic growth. In: Plant tropisms. Blackwell Publishing Ltd, Boston, pp 47–77. doi: 10.1002/9780470388297.ch3
  56. Mulkey T, Evans M, Kuzmanoff K (1983) The kinetics of abscisic acid action on root growth and gravitropism. Planta 157:150–157. doi: 10.1007/bf00393649 CrossRefGoogle Scholar
  57. Nagl W (1972) Selective inhibition of cell cycle stages in the Allium root meristem by colchicine and growth regulators. Am J Bot 59:346–351. doi: 10.2307/2441543 CrossRefGoogle Scholar
  58. Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475. doi: 10.1016/j.cell.2006.05.050 Google Scholar
  59. Pál M, Janda T, Szalai G (2011) Abscisic acid may alter the salicylic acid-related abiotic stress response in maize. J Agron Crop Sci 197:368–377. doi: 10.1111/j.1439-037X.2011.00474.x CrossRefGoogle Scholar
  60. Pilet PE, Saugy M (1987) Effect on root growth of endogenous and applied IAA and ABA: a critical reexamination. Plant Physiol 83:33–38CrossRefPubMedGoogle Scholar
  61. Ponce G, Rasgado FA, Cassab GI (2008) Roles of amyloplasts and water deficit in root tropisms. Plant Cell Environ 31:205–217. doi: 10.1111/j.1365-3040.2007.01752.x CrossRefPubMedGoogle Scholar
  62. Quiroz-Figueroa F, Rodríguez-Acosta A, Salazar-Blas A, Hernández-Domínguez E, Campos M, Kitahata N, Asami T, Galaz-Avalos R, Cassab G (2010) Accumulation of high levels of ABA regulates the pleiotropic response of the nhr1 Arabidopsis mutant. J Plant Biol 53:32–44. doi: 10.1007/s12374-009-9083-1 CrossRefGoogle Scholar
  63. Rober-Kleber N, Albrechtova JT, Fleig S, Huck N, Michalke W, Wagner E, Speth V, Neuhaus G, Fischer-Iglesias C (2003) Plasma membrane H+-ATPase is involved in auxin-mediated cell elongation during wheat embryo development. Plant Physiol 131:1302–1312. doi: 10.1104/pp.013466 CrossRefPubMedGoogle Scholar
  64. Rock CD, Sun X (2005) Crosstalk between ABA and auxin signaling pathways in roots of Arabidopsis thaliana (L.) Heynh. Planta 222:98–106. doi: 10.1007/s00425-005-1521-9 CrossRefPubMedGoogle Scholar
  65. Rodrigues A, Santiago J, Rubio S, Saez A, Osmont KS, Gadea J, Hardtke CS, Rodriguez PL (2009) The short-rooted phenotype of the brevis radix mutant partly reflects root abscisic acid hypersensitivity. Plant Physiol 149:1917–1928. doi: 10.1104/pp.108.133819 CrossRefPubMedGoogle Scholar
  66. Rodriguez PL, Benning G, Grill E (1998) ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett 421:185–190CrossRefPubMedGoogle Scholar
  67. Saucedo M, Ponce G, Campos ME, Eapen D, Garcia E, Lujan R, Sanchez Y, Cassab GI (2012) An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin. J Exp Bot 63:3587–3601. doi: 10.1093/jxb/ers025 CrossRefPubMedGoogle Scholar
  68. Schnall JA, Quatrano RS (1992) Abscisic acid elicits the water-stress response in root hairs of Arabidopsis thaliana. Plant Physiol 100:216–218CrossRefPubMedGoogle Scholar
  69. Sengupta D, Kannan M, Reddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233:1111–1127. doi: 10.1007/s00425-011-1365-4 CrossRefPubMedGoogle Scholar
  70. Seo PJ, Xiang F, Qiao M, Park JY, Lee YN, Kim SG, Lee YH, Park WJ, Park CM (2009) The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis. Plant Physiol 151:275–289. doi: 10.1104/pp.109.144220 CrossRefPubMedGoogle Scholar
  71. Sharma PD, Singh N, Ahuja PS, Reddy TV (2011) Abscisic acid response element binding factor 1 is required for establishment of Arabidopsis seedlings during winter. Mol Biol Rep 38:5147–5159. doi: 10.1007/s11033-010-0664-3 CrossRefPubMedGoogle Scholar
  72. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedGoogle Scholar
  73. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417. doi: 10.1016/S1369-5266(03)00092-X CrossRefPubMedGoogle Scholar
  74. Shkolnik-Inbar D, Bar-Zvi D (2010) ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22:3560–3573. doi: 10.1105/tpc.110.074641 CrossRefPubMedGoogle Scholar
  75. Shkolnik-Inbar D, Adler G, Bar-Zvi D (2012) ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance. Plant J 73:993–1005. doi: 10.1111/tpj.12091 CrossRefGoogle Scholar
  76. Signora L, De Smet I, Foyer CH, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662CrossRefPubMedGoogle Scholar
  77. Soitamo AJ, Piippo M, Allahverdiyeva Y, Battchikova N, Aro EM (2008) Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol 8:13. doi: 10.1186/1471-2229-8-13 CrossRefPubMedGoogle Scholar
  78. Soon FF, Suino-Powell KM, Li J, Yong EL, Xu HE, Melcher K (2012) Abscisic acid signaling: thermal stability shift assays as tool to analyze hormone perception and signal transduction. PLoS One 7:e47857. doi: 10.1371/journal.pone.0047857 CrossRefPubMedGoogle Scholar
  79. Soucek P, Klima P, Rekova A, Brzobohaty B (2007) Involvement of hormones and KNOXI genes in early Arabidopsis seedling development. J Exp Bot 58:3797–3810. doi: 10.1093/jxb/erm236 CrossRefPubMedGoogle Scholar
  80. Strader LC, Monroe-Augustus M, Rogers KC, Lin GL, Bartel B (2008) Arabidopsis iba response5 suppressors separate responses to various hormones. Genetics 180:2019–2031. doi: 10.1534/genetics.108.091512 CrossRefPubMedGoogle Scholar
  81. Takahashi N, Goto N, Okada K, Takahashi H (2002) Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216:203–211. doi: 10.1007/s00425-002-0840-3 CrossRefPubMedGoogle Scholar
  82. Taniguchi YY, Taniguchi M, Tsuge T, Oka A, Aoyama T (2010) Involvement of Arabidopsis thaliana phospholipase Dzeta2 in root hydrotropism through the suppression of root gravitropism. Planta 231:491–497. doi: 10.1007/s00425-009-1052-x CrossRefPubMedGoogle Scholar
  83. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599. doi: 10.1146/annurev.arplant.50.1.571 CrossRefPubMedGoogle Scholar
  84. Torre C, Diez JL, Lopez-Saez JF, Gimenez-Martin G (1972) Effect of abscisic acid on the cytological components of the root growth. Cytologia 37:197–205CrossRefGoogle Scholar
  85. Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138CrossRefPubMedGoogle Scholar
  86. Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, Gong Z (2011) Auxin response factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet 7:e1002172. doi: 10.1371/journal.pgen.1002172 CrossRefPubMedGoogle Scholar
  87. Wilson A, Pickett FB, Turner J, Estelle M (1990) A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet 222:377–383. doi: 10.1007/bf00633843 Google Scholar
  88. Wu SH, Wang C, Chen J, Lin BL (1994) Isolation of a cDNA encoding a 70 kDa heat-shock cognate protein expressed in vegetative tissues of Arabidopsis thaliana. Plant Mol Biol 25:577–583CrossRefPubMedGoogle Scholar
  89. Xin Z, Zhao Y, Zheng ZL (2005) Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis. Plant Physiol 139:1350–1365. doi: 10.1104/pp.105.068064 CrossRefPubMedGoogle Scholar
  90. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl):S165–S183PubMedGoogle Scholar
  91. Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074. doi: 10.1104/pp.106.084632 CrossRefPubMedGoogle Scholar
  92. Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J (2013) Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. New Phytol 197:139–150. doi: 10.1111/nph.12004 CrossRefPubMedGoogle Scholar
  93. Xue LW, Du JB, Yang H, Xu F, Yuan S, Lin HH (2009) Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Z Naturforsch C 64:225–230PubMedGoogle Scholar
  94. Yabe N, Takahashi T, Komeda Y (1994) Analysis of tissue-specific expression of Arabidopsis thaliana HSP90-family gene HSP81. Plant Cell Physiol 35:1207–1219PubMedGoogle Scholar
  95. Yang L, Ji W, Gao P, Li Y, Cai H, Bai X, Chen Q, Zhu Y (2012) GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One 7:e33838. doi: 10.1371/journal.pone.0033838 CrossRefPubMedGoogle Scholar
  96. Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61:672–685. doi: 10.1111/j.1365-313X.2009.04092.x CrossRefPubMedGoogle Scholar
  97. Zhang H, Rong H, Pilbeam D (2007) Signaling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana. J Exp Bot 58:2329–2338. doi: 10.1093/jxb/erm114 CrossRefPubMedGoogle Scholar
  98. Zhang S, Cai Z, Wang X (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci USA 106:4543–4548. doi: 10.1073/pnas.0900349106 CrossRefPubMedGoogle Scholar
  99. Zhang H, Han W, De Smet I, Talboys P, Loya R, Hassan A, Rong H, Jurgens G, Paul Knox J, Wang MH (2010a) ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. Plant J 64:764–774. doi: 10.1111/j.1365-313X.2010.04367.x CrossRefPubMedGoogle Scholar
  100. Zhang H, Mao X, Wang C, Jing R (2010b) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5:e16041. doi: 10.1371/journal.pone.0016041 CrossRefPubMedGoogle Scholar
  101. Zheng ZL, Nafisi M, Tam A, Li H, Crowell DN, Chary SN, Schroeder JI, Shen J, Yang Z (2002) Plasma membrane-associated ROP10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell 14:2787–2797CrossRefPubMedGoogle Scholar
  102. Zhou L, Franck C, Yang K, Pilot G, Heath LS, Grene R (2012) Mining for meaning: visualization approaches to deciphering Arabidopsis stress responses in roots and shoots. OMICS 16:208–228. doi: 10.1089/omi.2011.0111 CrossRefPubMedGoogle Scholar
  103. Zhu C, Schraut D, Hartung W, Schaffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971–2981. doi: 10.1093/jxb/eri294 CrossRefPubMedGoogle Scholar
  104. Zimmerli L, Hou BH, Tsai CH, Jakab G, Mauch-Mani B, Somerville S (2008) The xenobiotic beta-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J 53:144–156. doi: 10.1111/j.1365-313X.2007.03343.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biological Sciences and NUS Centre for BioImaging SciencesNational University of SingaporeSingaporeSingapore

Personalised recommendations