Advertisement

Plant Cell Reports

, Volume 32, Issue 8, pp 1191–1198 | Cite as

Efficient genetic transformation of okra (Abelmoschus esculentus (L.) Moench) and generation of insect-resistant transgenic plants expressing the cry1Ac gene

  • M. Narendran
  • Satish G. Deole
  • Satish Harkude
  • Dattatray Shirale
  • Asaram Nanote
  • Pankaj Bihani
  • Srinivas Parimi
  • Bharat R. CharEmail author
  • Usha B. Zehr
Original Paper

Abstract

Key message

Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ).

Abstract

Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.

Keywords

Abelmoschus esculentus Agrobacterium tumefaciens BtBacillus thuringiensis Shoot and fruit borer Transgenic okra 

References

  1. Ali M, Hossain MZ, Sarkern NC (2000) Inheritance of yellow vein mosaic virus (YVMV) tolerance in a cultivar of okra (Abelmoschus esculentus (L.) Moench). Euphytica 111:205–209CrossRefGoogle Scholar
  2. Brar KS, Arora SK, Ghai TR (1994) Losses in fruit yield of okra due to Earias spp. as influenced by dates of sowing and varieties. J Insect Sci 7:133–135Google Scholar
  3. Dhankhar BS, Singh R, Kumar R, Kumar S (2009) Genetic improvement. In: Dhankhar BS, Singh R (eds) Okra handbook: global production, processing and crop improvement. HNB Publishing, New York, pp 125–158Google Scholar
  4. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  5. Düzyaman E, Vural H (2003) Evaluation of pod characteristics and nutritive value of okra genetic resources. Acta Hort (ISHS) 598:103–110Google Scholar
  6. Fatokun CA (1987) Wide hybridization in okra. TAG Theor Appl Genet 74:483–486CrossRefGoogle Scholar
  7. Finer JJ, McMullen MD (1990) Transformation of cotton (Gossypium hirsutum L.) via particle bombardment. Plant Cell Rep 8:586–590CrossRefGoogle Scholar
  8. Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Bio Tech 5:807–812CrossRefGoogle Scholar
  9. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158PubMedCrossRefGoogle Scholar
  10. Ganesan M, Chandrasekar R, Ranjitha Kumari BD, Jayabalan N (2007) Somatic embryogenesis and plant regeneration of okra (Abelmoschus esculentus (L.) Moench) through suspension culture. Biol Plant 51(3):414–420CrossRefGoogle Scholar
  11. Hamon S, van Sloten DH (1995) Okra. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific and Technical, Longman Group, UKGoogle Scholar
  12. Jambhale ND, Nerkar YS (1981) Inheritance of resistance to okra yellow vein mosaic disease in interspecific crosses of Abelmoschus. Theor Appl Genet 60:313–316CrossRefGoogle Scholar
  13. Joshi AB, Hardas MW (1956) Alloploid nature of okra, Abelmoschus esculentus (L.) Moench. Nature 178:1190–1191CrossRefGoogle Scholar
  14. Joshi AB, Singh HB, Joshi BS (1960) Is yellow vein mosaic disease a nuisance in your bhendi, then why not grow ‘Pusa Sawani’. Indian Frm 10:6–7Google Scholar
  15. Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1303PubMedCrossRefGoogle Scholar
  16. Kochko A, Hamon S (1990) A rapid and efficient method for the isolation of restrictable total DNA from plants of the genus Abelmoschus. Plant Mol Biol Rep 8:3–7CrossRefGoogle Scholar
  17. Krishnakumar NK, Srinivasan K (1987) Efficacy and economics of pest control of okra with conventional and synthetic pyrethroid insecticides. Indian J Plant Prot 15:81–83Google Scholar
  18. Kumar PA, Sharma RP (1994) Genetic engineering of crop plants with Bacillus thuringiensis δ-endotoxin genes. J Plant Biochem Biotechnol 3:3–9CrossRefGoogle Scholar
  19. Kumar S, Dhingra A, Daniell H (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203–216PubMedCrossRefGoogle Scholar
  20. Mangat BS, Roy MK (1986) Tissue culture and plant regeneration of okra (Abelmoschus esculentus). Plant Sci 47:57–61CrossRefGoogle Scholar
  21. Memon AJ, Abro GH, Syed TS (2004) Varietal resistance of okra against Earias spp. J Entomol 1:1–5CrossRefGoogle Scholar
  22. Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED (1995) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance strategies. Mol Breed 1:309–317CrossRefGoogle Scholar
  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  24. Nwangburuka CC, Kehinde OB, Adegbite OA, Denton OA (2011) Mitotic chromosomes in Abelmoschus esculentus (L.) Moench esculentus (L.) Moench. Ann Biol Res 2:85–90Google Scholar
  25. Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupramaniam S, Heering D, Carey B, Ihrig RA, Roberts JK (2001) Development and commercial use of Bollgard cotton in the USA—early promises versus today’s reality. Plant J. 27:489–501PubMedCrossRefGoogle Scholar
  26. Rajamony L, Chandran M, Rajmohan K (2006) In Vitro embryo rescues of interspecific crosses for transferring virus resistance in okra (Abelmoschus esculentus (L.) Moench). Acta Hort (ISHS) 725:235–240Google Scholar
  27. Roy MK, Mangat BS (1989) Regeneration of plants from callus tissue of okra (Abelmoschus esculentus). Plant Sci 60:77–81CrossRefGoogle Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 82–84Google Scholar
  29. Satpathy S, Rai S (1998) Influence of sowing date and crop phenology on pest infestation in okra. Veg Sci 25:175–180Google Scholar
  30. Shukla A, Agrawal RK, Pathak SC (1997) Seasonal incidence of okra shoot and fruit borer, Earias vittella (Fab.) and effect of temperature on its infestation level. Adv Plant Sci 10:169–172Google Scholar
  31. Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52CrossRefGoogle Scholar
  32. Verma RS, Upadhyay KD, Gupta SP, Singh R, Viswanath, Lodhi PS (1984) Interaction between root-knot nematode, Meloidogyne javanica and spotted bollworm. Earias vittella on okra and effects on yield. Indian J Plant Prot 12:131–133Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Narendran
    • 1
  • Satish G. Deole
    • 1
  • Satish Harkude
    • 1
  • Dattatray Shirale
    • 1
  • Asaram Nanote
    • 1
  • Pankaj Bihani
    • 1
  • Srinivas Parimi
    • 1
  • Bharat R. Char
    • 1
    Email author
  • Usha B. Zehr
    • 1
  1. 1.Mahyco Research CentreMaharashtra Hybrid Seeds Company Ltd.JalnaIndia

Personalised recommendations