Plant Cell Reports

, Volume 32, Issue 5, pp 675–686 | Cite as

Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro

  • O. Bouchabké-Coussa
  • M. Obellianne
  • D. Linderme
  • E. Montes
  • A. Maia-Grondard
  • F. Vilaine
  • C. PannetierEmail author
Original Paper


Key message

This work shows that overexpression of the WUS gene from Arabidopsis enhanced the expression of embryogenic competence and triggered organogenesis from some cells of the regenerated embryo-like structures.


Agrobacterium-mediated genetic transformation of cotton was described in the late 1980s, but is still time consuming and largely genotype dependant due to poor regeneration. To help solve this bottleneck, we over-expressed the WUSCHEL (WUS) gene, a homeobox transcription factor cloned in Arabidopsis thaliana, known to stimulate organogenesis and/or somatic embryogenesis in Arabidopsis tissues cultured in vitro. The AtWUS gene alone, and AtWUS gene fused to the GFP marker were compared to the GFP gene alone and to an empty construct used as a control. Somatic embryogenesis was improved in WUS expressed calli, as the percentage of explants giving rise to embryogenic tissues was significantly higher (×3) when WUS gene was over-expressed than in the control. An interesting result was that WUS embryogenic lines evolved in green embryo-like structures giving rise to ectopic organogenesis never observed in any of our previous transformation experiments. Using our standard in vitro culture protocol, the overexpression of AtWUS in tissues of a recalcitrant variety did not result in the production of regenerated plants. This achievement will still require the optimization of other non-genetic factors, such as the balance of exogenous phytohormones. However, our results suggest that targeted expression of the WUS gene is a promising strategy to improve gene transfer in recalcitrant cotton cultivars.


Somatic embryogenesis Organogenesis WUSCHEL Gossypium hirsutum Agrobacterium-mediated transformation 



We thank P. Hilson, P. Laufs for their critical reading of the manuscript and J. Scarlett for checking English language. We are grateful to JC. Palauqui and F. Bonnot for their generous help in, respectively, confocal Imaging and statistical analysis. Seeds used to initiate our own seed stocks have been provided by CIRAD. This research was supported in part by Agence Nationale de la Recherche (ANR) agreement 05W 37, EUREKA project 3395 F 1203.


  1. Alemanno L, Devic M, Niemenak N, Sanier C, Guilleminot J, Rio M, Verdeil JL, Montoro P (2008) Characterization of leafy cotyledon1-like during embryogenesis in Theobroma cacao L. Planta 227(4):853–866. doi: 10.1007/s00425-007-0662-4 PubMedCrossRefGoogle Scholar
  2. Arroyo-Herrera A, Ku Gonzalez A, Canche Moo R, Quiroz-Figueroa F, Loyola-Vargas V, Rodriguez-Zapata L, Burgeff D′Hondt C, Suárez-Solís V, Castaño E (2008) Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tissue Organ Cult 94(2):171–180. doi: 10.1007/s11240-008-9401-1
  3. Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57(4):626–644PubMedCrossRefGoogle Scholar
  4. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, van Lookeren Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14(8):1737–1749PubMedCrossRefGoogle Scholar
  5. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R (2000) Dependence of stem cell fate in arabidopsis on a feedback loop regulated by CLV3 activity. Science 289(5479):617–619PubMedCrossRefGoogle Scholar
  6. Buffard-Morel J, Verdeil JL, Pannetier C (1992) Somatic embryogenesis of coconut (Cocos nucifera L.) from leaf explants: histological study. Can J Bot 70(4):735–741Google Scholar
  7. Cary A, Che P, Howell S (2002) Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J 32(6):867–877PubMedCrossRefGoogle Scholar
  8. Cousins Y, Lyon B, Llewellyn D (1991) Transformation of an Australian cotton cultivar: prospects for cotton improvement through genetic engineering. Aust. J. Plant Physiol 18Google Scholar
  9. Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13(13):4777–4788PubMedCrossRefGoogle Scholar
  10. Denancé N, Ranocha P, Oria N, Barlet X, Rivière M-P, Yadeta KA, Hoffmann L, Perreau F, Clément G, Maia-Grondard A, van den Berg GCM, Savelli B, Fournier S, Aubert Y, Pelletier S, Thomma BPHJ, Molina A, Jouanin L, Marco Y, Goffner D (2012) Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism. Plant J 73(2):225–239. doi: 10.1111/tpj.12027 PubMedGoogle Scholar
  11. Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10(6):967–979PubMedCrossRefGoogle Scholar
  12. Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74(3):201–228. doi: 10.1023/a:1024033216561 CrossRefGoogle Scholar
  13. Finer J, McMullen M (1990) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Cell Rep 8(10):203–206Google Scholar
  14. Firoozabady E, DeBoer DL (1993) Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.). In vitro Cell Dev Biol Plant J Tissue Cult Assoc 29(4):166–173Google Scholar
  15. Firoozabady E, Deboer DL, Murray EE, Merlo DJ, Adang MJ, Halk EL (1987) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10(2):105–116. doi: 10.1007/BF00016148 Google Scholar
  16. Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129(13):3207–3217 (Unspdev0423)PubMedGoogle Scholar
  17. Gallois JL, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18(4):375–380. doi: 10.1101/gad.291204 Google Scholar
  18. Gawel NJ, Rao AP, Robacker CD (1986) Somatic embryogenesis from leaf and petiole callus-cultures of Gossypium hirsutum L. Plant Cell Rep 5(6):457–459CrossRefGoogle Scholar
  19. Gordon S, Heisler M, Reddy G, Ohno C, Das P, Meyerowitz E (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134(19):3539–3548PubMedCrossRefGoogle Scholar
  20. Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci 106(38):16529–16534PubMedCrossRefGoogle Scholar
  21. Harding EW, Tang W, Nichols KW, Fernandez DE, Perry SE (2003) Expression and maintenance of embryogenic potential is enhanced through constitutive expression of AGAMOUS-Like 15. Plant Physiol 133(2):653–663. doi: 10.1104/pp.103.023499 PubMedCrossRefGoogle Scholar
  22. Hu L, Yang X, Yuan D, Zeng F, Zhang X (2011) GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. Plant Biotechnol J 9(9):1038–1048. doi: 10.1111/j.1467-7652.2011.00617.x PubMedCrossRefGoogle Scholar
  23. Jimenez V (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47(2–3):91–110. doi: 10.1007/s10725-005-3478-x CrossRefGoogle Scholar
  24. Jin S, Zhang X, Nie Y, Guo X, Liang S, Zhu H (2006) Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant 50(4):519–524. doi: 10.1007/s10535-006-0082-5 CrossRefGoogle Scholar
  25. Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C, Laux T, Davies B (2006) Analysis of the transcription factor WUSCHEL and its functional homologue in antirrhinum reveals a potential mechanism for their roles in meristem maintenance. Plant Cell Online 18(3):560–573CrossRefGoogle Scholar
  26. Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge RG (2010) Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Rep 29(7):723–734. doi: 10.1007/s00299-010-0859-z PubMedCrossRefGoogle Scholar
  27. Kumar S, Sharma P, Pental D (1998) A genetic approach to in vitro regeneration of non-egenerating cotton (Gossypium hirsutum L.) cultivars. Plant Cell Rep 18(1/2):59–63Google Scholar
  28. Laux T, Mayer KF, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122(1):87–96PubMedGoogle Scholar
  29. Lazzeri P, Hildebrand D, Collins G (1987) Soybean somatic embryogenesis—effects pf hormones and culture manipulations. Plant Cell Tissue Organ Cult 10(3):197–208. doi: 10.1007/BF00037304 CrossRefGoogle Scholar
  30. Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438(7071):1172–1175. doi: 10.1038/nature04270 Google Scholar
  31. Liu X, Kim YJ, Müller R, Yumul RE, Liu C, Pan Y, Cao X, Goodrich J, Chen X (2011) AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 23(10):3654–3670. doi: 10.1105/tpc.111.091538 Google Scholar
  32. Lotan T, Ohto M, Yee KM, West MA, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93(7):1195–1205PubMedCrossRefGoogle Scholar
  33. Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95(6):805–815 (pii:S0092-8674(00)81703-1)Google Scholar
  34. McCabe DE, Martinell BJ (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Nat Biotechnol 11(5):596–598CrossRefGoogle Scholar
  35. Michaux-Ferrière N, Schwendiman J (1992) Histology of somatic embryogenesis. In: Dattée Y, Dumas C, Gallais A (eds) Reproductive biology and plant breeding, pp 247–259. ISBN 3-540-54641-3Google Scholar
  36. Mishra R, Wang H-Y, Yadav N, Wilkins T (2003) Development of a highly regenerable elite Acala cotton (Gossypium hirsutum cv; Maxxa)—a step towards genotype-independent regeneration. Plant Tissue Organ Cult 73(1):21–35Google Scholar
  37. Morel G, Wetmore R (1951) Tissue culture of monocotyledons. Am J Bot 38(2):138–140CrossRefGoogle Scholar
  38. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497CrossRefGoogle Scholar
  39. Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, Tabata R, Kawai T, Tanaka K, Niwa Y, Watanabe Y, Nakamura K, Kimura T, Ishiguro S (2007) Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci Biotechnol Biochem 71(8):2095–2100PubMedCrossRefGoogle Scholar
  40. Obembe OO, Khan T, Popoola JO (2011) Use of somatic embryogenesis as a vehicle for cotton transformation. J Med Plants Res 5(17):4009–4020Google Scholar
  41. Pannetier C, Giband M, Couzi P, Le TV, Mazier M, Toruneur J, Hau B (1997) Introduction of new traits into cotton through genetic engineering: insect resistance as example. Euphytica 96(1):163–166CrossRefGoogle Scholar
  42. Paz-Ares J, The REGIA Consortium (2002) REGIA, an EU Project on Functional Genomics of Transcription Factors from Arabidopsis thaliana. Comput Funct Genomics 3(2):102–108. doi: 10.1002/cfg.146 CrossRefGoogle Scholar
  43. Price HJ, Smith RH (1979) Somatic embryogenesis in suspension cultures of Gossypium klotzsciaanum Andress. Planta 145(3):305–307. doi: 10.1007/bf00454456 CrossRefGoogle Scholar
  44. Rose RJ, Nolan KE (2006) Genetic regulation of somatic embryogenesis with particular reference to Arabidopsis thaliana and Medicago truncatula. In Vitro Cell Dev Biol Plant 42(6):473–481. doi: 10.1079/ivp2006806 CrossRefGoogle Scholar
  45. Sablowski R (2009) Cytokinin and WUSCHEL tie the knot around plant stem cells. Proc Natl Acad Sci USA 106(38):16016–16017. doi: 10.1073/pnas.0909300106
  46. Sakhanokho HF, Zipf A, Raiasekaran K, Saha S, Sharma GC (2001) Induction of highly embryogenic calli and plant regeneration in upland (Gossypium hirsutum L.) and pima (Gossypium barbadense L.) cottons. Crop Sci 41(4):1235–1240CrossRefGoogle Scholar
  47. Sakhanokho H, Ozias A, May O, Chee P (2004) Induction of somatic embryogenesis and plant regeneration in select Georgia and Pee Dee cotton lines. Crop Sci 44(6):2199–2205CrossRefGoogle Scholar
  48. Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100(6):635-644. (pii:S0092-8674(00)80700-X)Google Scholar
  49. Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9(5):484–489. doi: 10.1016/j.pbi.2006.07.008 PubMedCrossRefGoogle Scholar
  50. Shoemaker RC, Couche LJ, Galbraith DW (1986) Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 5(3):178–181CrossRefGoogle Scholar
  51. Solis-Ramos LY, Gonzalez-Estrada T, Nahuath-Dzib S, Zapata-Rodriguez LC, Castano E (2009) Overexpression of WUSCHEL in C. chinense causes ectopic morphogenesis. Plant Cell Tissue Organ Cult 96(3):279–287. doi: 10.1007/s11240-008-9485-7 Google Scholar
  52. Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59(3):448–460PubMedCrossRefGoogle Scholar
  53. Sun Y, Zhang X, Huang C, Guo X, Nie Y (2006) Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep 25(4):289–296. doi: 10.1007/s00299-005-0085-2 Google Scholar
  54. Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8(1)37–52Google Scholar
  55. Tahir M, Stasolla C (2006) Shoot apical development during in vitro embryogenesis. Can J Bot-Revue Canadienne De Botanique 84(11):1650–1659. doi: 10.1139/b06-070 CrossRefGoogle Scholar
  56. Trolinder N, Goodin J (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6(3):231–234Google Scholar
  57. Trolinder N, Goodin J (1988a) Somatic embryogenesis in cotton (Gossypium hirsutum L.) I. Effects of source of explant and hormone regime. Plant Cell Tissue Organ Cult 12(1):31–42Google Scholar
  58. Trolinder N, Goodin J (1988b) Somatic embryogenesis in cotton (Gossypium hirsutum L.) II Requirements for embryo development and regeneration. Plant Cell Tissue Organ Cult 12(1):43–53Google Scholar
  59. Trolinder N, Xhixian C (1989) Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Rep 8(3):133–136Google Scholar
  60. Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio-Technology 5(3):263–266Google Scholar
  61. Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12(6):245–252. doi: 10.1016/j.tplants.2007.04.002 PubMedCrossRefGoogle Scholar
  62. Wilkins TA, Mishra R, Trolinder NL (2004) Agrobacterium-mediated transformation and regeneration of cotton. J Food Agric Environ 2(1):179–187Google Scholar
  63. Wu J, Zhang X, Nie Y, Jin S, Liang S (2004) Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cottons (Gossypium hirsutum L.). In Vitro Cell Dev Biol Plant 40(4):371–375. doi: 10.1079/ivp2004535 CrossRefGoogle Scholar
  64. Wu X, Li F, Zhang C, Liu C, Zhang X (2009) Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis. J Plant Physiol 166(12):1275–1283. doi: 10.1016/j.jplph.2009.01.012 PubMedCrossRefGoogle Scholar
  65. Xu YY, Wang XM, Li J, Li JH, Wu JS, Walker JC, Xu ZH, Chong K (2005) Activation of the WUS gene induces ectopic initiation of floral meristems on mature stem surface in Arabidopsis thaliana (vol 58, pg 773, 2005). Plant Mol Biol 58(6):915-915. doi: 10.1007/s11103-005-2560-0
  66. Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12(110)Google Scholar
  67. Zeng FC, Zhang XK, Zhu LF, Tu LL, Guo XP, Nie YH (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60(2):167–183. doi: 10.1007/s11103-005-3381-x PubMedCrossRefGoogle Scholar
  68. Zhang BH, Wang QL, Liu F, Wang KB, Frazier TP (2009) Highly efficient plant regeneration through somatic embryogenesis in 20 elite commercial cotton (Gossypium hirsutum L.) cultivars. Plant Omics 2(6):259–268Google Scholar
  69. Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU (2010) Hormonal control of the shoot stem-cell niche. Nature 465(7301):1089–U1154. doi: 10.1038/nature09126 Google Scholar
  70. Zimmerman J (1993) Somatic embryogenesis—a model for early development in higher plants. Plant Cell 5(10):1411–1423. doi: 10.2307/3869792 PubMedGoogle Scholar
  71. Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30(3):349–359 (pii:1289)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • O. Bouchabké-Coussa
    • 1
    • 2
  • M. Obellianne
    • 1
    • 2
  • D. Linderme
    • 1
    • 2
  • E. Montes
    • 1
  • A. Maia-Grondard
    • 1
  • F. Vilaine
    • 1
  • C. Pannetier
    • 1
    • 2
    • 3
    Email author
  1. 1.INRAUMR1318, Institut Jean-Pierre Bourgin, RD10VersaillesFrance
  2. 2.CIRAD, UR-SCAVersaillesFrance
  3. 3.CIRAD UMR AGAPVersaillesFrance

Personalised recommendations