Plant Cell Reports

, Volume 32, Issue 6, pp 839–851 | Cite as

Phosphoglycerolipids are master players in plant hormone signal transduction

  • Martin Janda
  • Severine Planchais
  • Nabila Djafi
  • Jan Martinec
  • Lenka Burketova
  • Olga Valentova
  • Alain Zachowski
  • Eric Ruelland


Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.


Phospholipase Phosphoglycerolipids Lipid kinase Abscisic acid Salicylic acid Auxin Signalling Phosphatidic acid 



The authors acknowledge funding by Czech Science Foundation (grant no. 501/11/1654; OV, MJ, JM), by CNRS and AVCR bilateral convention (MSMT, grant no. 7AMB12FR018; JM, ER, OV, MJ) and the French Agence Nationale de la Recherche (Programme Blanc PANACEANT09_517917; ER). ND is a recipient of a Hubert Curien-Tassili PhD fellowship and MJ is a recipient of a Specific University Research PhD fellowship (MSMT No. 21/2011).

Supplementary material

299_2013_1399_MOESM1_ESM.docx (136 kb)
Supplementary material 1 (DOCX 137 kb)
299_2013_1399_MOESM2_ESM.docx (129 kb)
Supplementary material 2 (DOCX 130 kb)
299_2013_1399_MOESM3_ESM.ppt (169 kb)
Supplementary material 3 (PPT 169 kb)
299_2013_1399_MOESM4_ESM.ppt (662 kb)
Supplementary material 4 (PPT 663 kb)


  1. Altuzar-Molina AR, Armando Munoz-Sanchez J, Vazquez-Flota F, Racagni-Di Palma G, Hernández-Sotomayor SM (2011) Phospholipidic signaling and vanillin production in response to salicylic acid and methyl jasmonate in Capsicum chinense J. cells. Plant Physiol Biochem 49:151–158. doi: 10.1016/j.plaphy.2010.11.005 PubMedCrossRefGoogle Scholar
  2. Amini A, Glévarec G, Andreu F, Reverdiau P, Rideau M, Crèche J (2008) Effects of phosphatidic acid on cytokinin signal transduction in periwinkle cells. J Plant Growth Regul 27:394–399. doi: 10.1007/s00344-008-9058-3 CrossRefGoogle Scholar
  3. Anthony RG, Henriques R, Helfer A, Mészáros T, Rios G, Testerink C, Munnik T, Deák M, Koncz C, Bögre L (2004) A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis. EMBO J 23:572–581. doi: 10.1038/sj.emboj.7600068 PubMedCrossRefGoogle Scholar
  4. Apone F (2003) The G-protein-coupled receptor GCR1 regulates DNA synthesis through activation of phosphatidylinositol-specific phospholipase C. Plant Physiol 133:571–579. doi: 10.1104/pp.103.026005 PubMedCrossRefGoogle Scholar
  5. Brown WJ, Chambers K, Doody A (2003) Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4:214–221. doi: 10.1034/j.1600-0854.2003.00078.x PubMedCrossRefGoogle Scholar
  6. Camoni L, Di Lucente C, Pallucca R, Visconti S, Aducci P (2012) Binding of phosphatidic acid to 14-3-3 proteins hampers their ability to activate the plant plasma membrane H+-ATPase. IUBMB Life 64:710–716. doi: 10.1002/iub.1058 PubMedCrossRefGoogle Scholar
  7. Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L, Catimel J, Nice EC, Burgess AW, Holmes AB (2008) The PI(3,5)P2 and PI(4,5)P2 interactomes. J Proteome Res 7:5295–5313. doi: 10.1021/pr800540h PubMedCrossRefGoogle Scholar
  8. Chen G, Snyder CL, Greer MS, Weselake RJ (2011) Biology and biochemistry of plant phospholipases. Crit Rev Plant Sci 30:239–258. doi: 10.1080/07352689.2011.572033 CrossRefGoogle Scholar
  9. Delage E, Puyaubert J, Zachowski A, Ruelland E (2013) Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms. Prog Lipid Res 52:1–14. doi: 10.1016/j.plipres.2012.08.003 PubMedCrossRefGoogle Scholar
  10. Distéfano AM, Scuffi D, García-Mata C, Lamattina L, Laxalt AM (2012) Phospholipase Dδ is involved in nitric oxide-induced stomatal closure. Planta 236:1899–1907. doi: 10.1007/s00425-012-1745-4 Google Scholar
  11. Dong W, Lv H, Xia G, Wang M (2012) Does diacylglycerol serve as a signaling molecule in plants? Plant Signal Behav 7:472–475. doi: 10.4161/psb.19644 PubMedCrossRefGoogle Scholar
  12. Dubots E, Botte C, Boudiere L, Yamaryo-Botté Y, Jouhet J, Maréchal E, Block MA (2012) Role of phosphatidic acid in plant galactolipid synthesis. Biochimie 94:86–93. doi: 10.1016/j.biochi.2011.03.012 PubMedCrossRefGoogle Scholar
  13. Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–D834. doi: 10.1093/nar/gkp810 PubMedCrossRefGoogle Scholar
  14. Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183–2196. doi: 10.1105/tpc.9.12.2183 PubMedGoogle Scholar
  15. Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232. doi: 10.1038/nature11162 PubMedGoogle Scholar
  16. Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769–771. doi: 10.1038/346769a0 PubMedCrossRefGoogle Scholar
  17. Gunesekera B, Torabinejad J, Robinson J, Gillaspy GE (2007) Inositol polyphosphate 5-phosphatases 1 and 2 are required for regulating seedling growth. Plant Physiol 143:1408–1417. doi: 10.1104/pp.106.089474 PubMedCrossRefGoogle Scholar
  18. Guo L, Mishra G, Taylor K, Wang X (2011) Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 286:13336–13345. doi: 10.1074/jbc.M110.190892 PubMedCrossRefGoogle Scholar
  19. Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X (2012) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem. doi: 10.1074/jbc.M111.274274 Google Scholar
  20. Hallouin M, Ghelis T, Brault M, Bardat F, Cornel D, Miginiac E, Rona JP, Sotta B, Jeannette E (2002) Plasmalemma abscisic acid perception leads to RAB18 expression via phospholipase D activation in Arabidopsis suspension cells. Plant Physiol 130:265–272. doi: 10.1104/pp.004168 PubMedCrossRefGoogle Scholar
  21. Holk A, Klumpp L, Scherer GFE (2002) A cell wall protein down-regulated by auxin suppresses cell expansion in Daucus carota (L.). Plant Mol Biol 50:295–305. doi: 10.1023/A:1016052613196 PubMedCrossRefGoogle Scholar
  22. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747. doi: 10.1155/2008/420747 PubMedGoogle Scholar
  23. Huang S, Gao L, Blanchoin L, Staiger CJ (2006) Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid. Mol Biol Cell 17:1946–1958. doi: 10.1091/mbc.E05-09-0840 PubMedCrossRefGoogle Scholar
  24. Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62:2305–2316. doi: 10.1007/s00018-005-5195-z PubMedCrossRefGoogle Scholar
  25. Jeong S, Park CH, Kim MK, Nam S, Hong J, Kim SK (2012) Effect of lysophosphatidylethanolamine and brassinosteroids on development of Arabidopsis roots. J Plant Biol 55:178–184. doi: 10.1007/s12374-011-9202-7 Google Scholar
  26. Kalachova T, Iakovenko O, Kretinin S, Kravets V (2013) Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade. Plant Physiol Biochem. doi: 10.1016/j.plaphy.2013.02.006
  27. Kashem MA, Itoh K, Iwabuchi S, Hori H, Mitsui T (2000) Possible involvement of phosphoinositide-Ca2+ signaling in the regulation of α-amylase expression and germination of rice seed (Oryza sativa L.). Plant Cell Physiol 41:399–407. doi: 10.1093/pcp/41.4.399 PubMedCrossRefGoogle Scholar
  28. Klimecka M, Szczegielniak J, Godecka L, Lewandowska-Gnatowska E, Dobrowolska G, Muszyńska G (2011) Regulation of wound-responsive calcium-dependent protein kinase from maize (ZmCPK11) by phosphatidic acid. Acta Biochim Pol 58:589–595PubMedGoogle Scholar
  29. Kravets VS, Kolesnikov YS, Kretynin SV, Getman IA, Romanov GA (2010) Rapid activation of specific phospholipase(s) D by cytokinin in Amaranthus assay system. Physiol Plant 138:249–255. doi: 10.1111/j.1399-3054.2009.01324.x Google Scholar
  30. Krinke O, Ruelland E, Valentova O, Vergnolle C, Renou JP, Taconnat L, Flemr M, Burketová L, Zachowski A (2007a) Phosphatidylinositol 4-kinase activation is an early response to salicylic acid in Arabidopsis suspension cells. Plant Physiol 144:1347–1359. doi: 10.1104/pp.107.100842 PubMedCrossRefGoogle Scholar
  31. Krinke O, Novotná Z, Valentová O, Martinec J (2007b) Inositol trisphosphate receptor in higher plants: is it real? J Exp Bot 58:361. doi: 10.1093/jxb/erl220 PubMedCrossRefGoogle Scholar
  32. Krinke O, Flemr M, Vergnolle C, Collin S, Renou JP, Taconnat L, Yu A, Burketová L, Valentová O, Zachowski A, Ruelland E (2009) Phospholipase D activation is an early component of the salicylic acid signaling pathway in Arabidopsis cell suspensions. Plant Physiol 150:424–436. doi: 10.1104/pp.108.133595 PubMedCrossRefGoogle Scholar
  33. Labusch C, Shishova M, Effendi Y, Li M, Wang X, Scherer GFE (2013) Changes in pattern and timing of expression for early auxin-induced genes in phospholipase A mutants imply their involvement in the regulation of auxin responses. Mol Plant (in press)Google Scholar
  34. Lanteri ML, Laxalt AM, Lamattina L (2008) Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Plant Physiol 147:188–198. doi: 10.1104/pp.107.111815 PubMedCrossRefGoogle Scholar
  35. Lee Y, Choi YB, Suh S, Lee J, Assmann SM, Joe CO, Kelleher JF, Crain RC (1996) Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba. Plant Physiol 110:987–996. doi: 10.1104/pp.110.3.987 PubMedGoogle Scholar
  36. Lee SH, Chae HS, Lee TK, Kim SH, Shin SH, Cho BH, Cho SH, Kang BG, Lee WS (1998) Ethylene-mediated phospholipid catabolic pathway in glucose-starved carrot suspension cells. Plant Physiol 116:223–229. doi: 10.1104/pp.116.1.223 CrossRefGoogle Scholar
  37. Lee HY, Bahn SC, Kang YM, Lee KH, Kim HJ, Noh EK, Palta JP, Shin JS, Ryu SB (2003) Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15:1990–2002. doi: 10.1105/tpc.014423 PubMedCrossRefGoogle Scholar
  38. Lee OR, Kim SJ, Kim HJ, Hong JK, Ryu SB, Lee SH, Ganguly A, Cho HT (2010) Phospholipase A(2) is required for PIN-FORMED protein trafficking to the plasma membrane in the Arabidopsis root. Plant Cell 22:1812–1825. doi: 10.1105/tpc.110.074211 PubMedCrossRefGoogle Scholar
  39. Lemtiri-Chlieh F, MacRobbie EAC, Webb AAR, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci USA 100:10091–10095. doi: 10.1073/pnas.1133289100 PubMedCrossRefGoogle Scholar
  40. Leung J, Bouvierdurand M, Morris PC, Guerrier D, Chefdor F, Giraudat J (1994) Arabidopsis Aba response gene Abi1—features of a calcium-modulated protein phosphatase. Science 264:1448–1452. doi: 10.1126/science.7910981 PubMedCrossRefGoogle Scholar
  41. Li G, Xue HW (2007) Arabidopsis PLDzeta2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295. doi: 10.1105/tpc.106.041426 PubMedCrossRefGoogle Scholar
  42. Li G, Lin F, Xue HW (2007) Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLD beta 1 in seed germination. Cell Res 17:881–894. doi: 10.1038/cr.2007.77 PubMedCrossRefGoogle Scholar
  43. Li J, Henty-Ridilla JL, Huang S, Wang X, Blanchoin L, Staiger CJ (2012) Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis. Plant Cell 24:3742–3754. doi: 10.1105/tpc.112.103945 PubMedCrossRefGoogle Scholar
  44. Lin WH, Ye R, Ma H, Xu ZH, Xue HW (2004) DNA chip-based expression profile analysis indicates involvement of the phosphatidylinositol signaling pathway in multiple plant responses to hormone and abiotic treatments. Cell Res 14:34–45. doi: 10.1038/ Google Scholar
  45. Lou Y, Ma H, Lin WH, Chu ZQ, Mueller-Roeber B, Xu ZH, Xue HW (2006) The highly charged region of plant beta-type phosphatidylinositol 4-kinase is involved in membrane targeting and phospholipid binding. Plant Mol Biol 60:729–746. doi: 10.1007/s11103-005-5548-x PubMedCrossRefGoogle Scholar
  46. Ma X, Shor O, Diminshtein S, Yu L, Im YJ, Perera I, Lomax A, Boss WF, Moran N (2009) Phosphatidylinositol (4,5)bisphosphate inhibits K+-efflux channel activity in NT1 tobacco cultured cells. Plant Physiol 149:1127–1140. doi: 10.1104/pp.108.129007 PubMedCrossRefGoogle Scholar
  47. Madrid E, Corchete P (2010) Silymarin secretion and its elicitation by methyl jasmonate in cell cultures of Silybum marianum is mediated by phospholipase D-phosphatidic acid. J Exp Bot 61:747–754. doi: 10.1093/jxb/erp339 PubMedCrossRefGoogle Scholar
  48. Marcotte WR, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1:969. doi: 10.2307/3868997 PubMedGoogle Scholar
  49. McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Laurière C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72:436–449. doi: 10.1111/j.1365-313X.2012.05089.x PubMedCrossRefGoogle Scholar
  50. Mishra G, Zhang W, Deng F, Zhao J, Wang X (2006) A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312:264–266. doi: 10.1126/science.1123769 PubMedCrossRefGoogle Scholar
  51. Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N (2007) Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51:656–669. doi: 10.1111/j.1365-313X.2007.03169.x PubMedCrossRefGoogle Scholar
  52. Mosblech A, König S, Stenzel I, Grzeganek P, Feussner I, Heilmann I (2008) Phosphoinositide and inositolpolyphosphate signalling in defense responses of Arabidopsis thaliana challenged by mechanical wounding. Mol Plant 1:249–261. doi: 10.1093/mp/ssm028 PubMedCrossRefGoogle Scholar
  53. Munnik T, Arisz SA, De Vrije T, Musgrave A (1995) G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7:2197–2210. doi: 10.1105/tpc.7.12.2197 Google Scholar
  54. Nanmori T, Taguchi W, Kinugasa M, Oji Y, Sahara S, Fukami Y, Kikkawa U (1994) Purification and characterization of protein kinase C from a higher plant, Brassica campestris L. Biochem Biophys Res Commun 203:311–318. doi: 10.1006/bbrc.1994.2183 PubMedCrossRefGoogle Scholar
  55. Novotná Z, Linek J, Hynek R, Martinec J, Potocký M, Valentová O (2003) Plant PIP2-dependent phospholipase D activity is regulated by phosphorylation. FEBS Lett 554:50–54. doi: 10.1016/S0014-5793(03)01093-7 PubMedCrossRefGoogle Scholar
  56. Park KY, Jung JY, Park J, Hwang JU, Kim YW, Hwang I, Lee Y (2003) A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol 132:92–98. doi: 10.1104/pp.102.016964 PubMedCrossRefGoogle Scholar
  57. Perera IY, Hung CY, Moore CD, Stevenson-Paulik J, Boss WF (2008) Transgenic Arabidopsis plants expressing the type 1 inositol 5-phosphatase exhibit increased drought tolerance and altered abscisic acid signaling. Plant Cell 20:2876–2893. doi: 10.1105/tpc.108.061374 PubMedCrossRefGoogle Scholar
  58. Pleskot R, Potocký M, Pejchar P, Linek J, Bezvoda R, Martinec J, Valentová O, Novotná Z, Zárský V (2010) Mutual regulation of plant phospholipase D and the actin cytoskeleton. PLant J 62:494–507. doi: 10.1111/j.1365-313X.2010.04168.x PubMedCrossRefGoogle Scholar
  59. Pleskot R, Pejchar P, Bezvoda R, Lichtscheidl IK, Wolters-Arts M, Marc J, Zárský V, Potocký M (2012) Turnover of phosphatidic acid through distinct signaling pathways affects multiple aspects of pollen tube growth in tobacco. Front Plant Sci 3:54. doi: 10.3389/fpls.2012.00054 PubMedCrossRefGoogle Scholar
  60. Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J (2013) The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 52:62–79. doi: 10.1016/j.plipres.2012.09.001 PubMedCrossRefGoogle Scholar
  61. Pribat A, Sormani R, Rousseau-Gueutin M, Julkowska MM, Testerink C, Joubès J, Castroviejo M, Laguerre M, Meyer C, Germain V, Rothan C (2012) A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid. Biochem J 441:161–171. doi: 10.1042/BJ20110776 PubMedCrossRefGoogle Scholar
  62. Profotová B, Burketová L, Novotná Z, Martinec J, Valentová O (2006) Involvement of phospholipases C and D in early response to SAR and ISR inducers in Brassica napus plants. Plant Physiol Biochem 44:143–151. doi: 10.1016/j.plaphy.2006.02.003 PubMedCrossRefGoogle Scholar
  63. Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296. doi: 10.1016/j.plantsci.2009.06.012 CrossRefGoogle Scholar
  64. Reitz MU, Bissue JK, Zocher K, Attard A, Hückelhoven R, Becker K, Imani J, Eichmann R, Schäfer P (2012) The subcellular localization of Tubby-like proteins and participation in stress signaling and root colonization by the mutualist Piriformospora indica. Plant Physiol 160:349–364. doi: 10.1104/pp.112.201319 PubMedCrossRefGoogle Scholar
  65. Rietz S, Dermendjiev G, Oppermann E, Tafesse FG, Effendi Y, Holk A, Parker JE, Teige M, Scherer GF (2010) Roles of Arabidopsis patatin-related phospholipases a in root development are related to auxin responses and phosphate deficiency. Mol Plant 3:524–538. doi: 10.1093/mp/ssp109 PubMedCrossRefGoogle Scholar
  66. Ritchie S, Gilroy S (2000) Abscisic acid stimulation of phospholipase D in the barley aleurone is G-protein-mediated and localized to the plasma membrane. Plant Physiol 124:693–702. doi: 10.1104/pp.124.2.693 Google Scholar
  67. Robles P, Fleury D, Candela H, Cnops G, Alonso-Peral MM, Anami S, Falcone A, Caldana C, Willmitzer L, Ponce MR, Van Lijsebettens M, Micol JL (2010) The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis. Plant Physiol 152:1357–1372. doi: 10.1104/pp.109.149369 PubMedCrossRefGoogle Scholar
  68. Romanov GA, Kieber JJ, Schmülling T (2002) A rapid cytokinin response assay in Arabidopsis indicates a role for phospholipase D in cytokinin signalling. FEBS Lett 515:39–43. doi: 10.1016/S0014-5793(02)02415-8 PubMedCrossRefGoogle Scholar
  69. Ryu SB (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci 9:229–235. doi: 10.1016/j.tplants.2004.03.004 PubMedCrossRefGoogle Scholar
  70. Sanchez JP, Chua NH (2001) Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. Plant Cell 13:1143–1154. doi: 10.1105/tpc.13.5.1143 PubMedGoogle Scholar
  71. Sánchez-Sampedro MA, Fernández-Tárrago J, Corchete P (2009) Elicitation of silymarin in cell cultures of Silybum marianum: effect of subculture and repeated addition of methyl jasmonate. Biotechnol Lett 31:1633–1637. doi: 10.1007/s10529-009-0043-0 PubMedCrossRefGoogle Scholar
  72. Scherer GF, André B (1989) A rapid response to a plant hormone: auxin stimulates phospholipase A2 in vivo and in vitro. Biochem Biophys Res Commun 163:111–117. doi: 10.1016/0006-291X(89)92106-2 PubMedCrossRefGoogle Scholar
  73. Scherer GFE, Zahn M, Callis J, Jones AM (2007) A role for phospholipase A in auxin-regulated gene expression. FEBS Lett 581:4205–4211. doi: 10.1016/j.febslet.2007.07.059 PubMedCrossRefGoogle Scholar
  74. Scherer GFE, Ryu SB, Wang X, Matos AR, Heitz T (2010) Patatin-related phospholipase A: nomenclature, subfamilies and functions in plants. Trends Plant Sci 15:693–700. doi: 10.1016/j.tplants.2010.09.005 PubMedCrossRefGoogle Scholar
  75. Scherer GFE, Labusch C, Effendi Y (2012) Phospholipases and the network of auxin signal transduction with ABP1 and TIR1 as two receptors: a comprehensive and provocative model. Front Plant Sci. doi: 10.3389/fpls.2012.00056 PubMedGoogle Scholar
  76. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–405. doi: 10.1038/nature09430 PubMedCrossRefGoogle Scholar
  77. Taiz L, Zeiger E (2010) Plant physiology, 5th edition. Sinauer Associates Inc, SunderlandGoogle Scholar
  78. Takemiya A, Shimazaki K (2010) Phosphatidic acid inhibits blue light-induced stomatal opening via inhibition of protein phosphatase 1. Plant Physiol 153:1555–1562. doi: 10.1104/pp.110.155689 PubMedCrossRefGoogle Scholar
  79. Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645. doi: 10.1038/nature05731 PubMedCrossRefGoogle Scholar
  80. Testerink C, Larsen PB, Van der Does D, van Himbergen JA, Munnik T (2007) Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J Exp Bot 58:3905–3914. doi: 10.1093/jxb/erm243 PubMedCrossRefGoogle Scholar
  81. Tian M, Von Dahl CC, Liu PP, Friso G, van Wijk KJ, Klessig DF (2012) The combined use of photoaffinity labeling and surface plasmon resonance-based technology identifies multiple salicylic acid-binding proteins. Plant J 72:1027–1038. doi: 10.1111/tpj.12016 Google Scholar
  82. Tuteja N, Sopory SK (2008) Plant signaling in stress. Plant Signal Behav 3:79–86. doi: 10.4161/psb.3.2.5303 PubMedCrossRefGoogle Scholar
  83. Uraji M, Katagiri T, Okuma E, Ye W, Hossain MA, Masuda C, Miura A, Nakamura Y, Mori IC, Shinozaki K, Murata Y (2012) Cooperative function of PLD delta and PLD alpha 1 in abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 159:450–460. doi: 10.1104/pp.112.195578 PubMedCrossRefGoogle Scholar
  84. Villasuso AL, Molas ML, Racagni G, Abdala G, Machado-Domenech E (2003) Gibberellin signal in barley aleurone: early activation of PLC by G protein mediates amylase secretion. Plant Growth Regul 41:197–205. doi: 10.1023/B:GROW.0000007505.37356.89 CrossRefGoogle Scholar
  85. Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278. doi: 10.1016/j.plipres.2006.01.005 PubMedCrossRefGoogle Scholar
  86. Wang Y, Lin WH, Chen X, Xue HW (2009) The role of Arabidopsis 5PTase13 in root gravitropism through modulation of vesicle trafficking. Cell Res 19:1191–1204. doi: 10.1038/cr.2009.105 PubMedCrossRefGoogle Scholar
  87. Wheeler GL, Brownlee C (2008) Ca2+ signalling in plants and green algae—changing channels. Trends Plant Sci 13:506–514. doi: 10.1016/j.tplants.2008.06.004 PubMedCrossRefGoogle Scholar
  88. Williams ME, Torabinejad J, Cohick E, Parker K, Drake EJ, Thompson JE, Hortter M, Dewald DB (2005) Mutations in the Arabidopsis phosphoinositide phosphatase gene SAC9 lead to overaccumulation of PtdIns(4,5)P2 and constitutive expression of the stress-response pathway. Plant Physiol 138:686–700. doi: 10.1104/pp.105.061317 PubMedCrossRefGoogle Scholar
  89. Wimalasekera R, Pejchar P, Holk A, Martinec J, Scherer GF (2010) Plant phosphatidylcholine-hydrolyzing phospholipases C NPC3 and NPC4 with roles in root development and brassinolide signaling in Arabidopsis thaliana. Mol Plant 3:610–625. doi: 10.1093/mp/ssq005 Google Scholar
  90. Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Després C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports 1:639–647. doi: 10.1016/j.celrep.2012.05.008 PubMedCrossRefGoogle Scholar
  91. Xiong L, Lee Bh, Ishitani M, Lee H, Zhang C, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984. doi: 10.1101/gad.891901 PubMedCrossRefGoogle Scholar
  92. Yang S, Lu SH, Yuan YJ (2008) Lipidomic analysis reveals differential defense responses of Taxus cuspidata cells to two elicitors, methyl jasmonate and cerium (Ce4+). Biochim Biophys Acta 1781:123–134. doi: 10.1016/j.bbalip.2007.11.005 PubMedCrossRefGoogle Scholar
  93. Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773. doi: 10.1111/j.1469-8137.2010.03422.x PubMedCrossRefGoogle Scholar
  94. Zalejski C, Zhang Z, Quettier A-L, Maldiney R, Bonnet M, Brault M, Demandre C, Miginiac E, Rona JP, Sotta B, Jeannette E (2005) Diacylglycerol pyrophosphate is a second messenger of abscisic acid signaling in Arabidopsis thaliana suspension cells. Plant J 42:145–152. doi: 10.1111/j.1365-313X.2005.02373.x PubMedCrossRefGoogle Scholar
  95. Zalejski C, Paradis S, Maldiney R, Habricot Y, Miginiac E, Rona JP, Jeannette E (2006) Induction of abscisic acid-regulated gene expression by diacylglycerol pyrophosphate involves Ca2+ and anion currents in Arabidopsis suspension cells. Plant Physiol 141:1555–1562. doi: 10.1104/pp.106.080218 PubMedCrossRefGoogle Scholar
  96. Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513. doi: 10.1073/pnas.0402112101 PubMedCrossRefGoogle Scholar
  97. Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377. doi: 10.1105/tpc.108.062992 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin Janda
    • 3
    • 4
  • Severine Planchais
    • 1
    • 2
  • Nabila Djafi
    • 1
    • 2
  • Jan Martinec
    • 3
  • Lenka Burketova
    • 3
  • Olga Valentova
    • 4
  • Alain Zachowski
    • 1
    • 2
  • Eric Ruelland
    • 1
    • 2
  1. 1.UPMC UnivParis06, UR5, Physiologie Cellulaire et Moléculaire des PlantesParis Cedex 05France
  2. 2.CNRS, EAC7180, Physiologie Cellulaire et Moléculaire des PlantesParis Cedex 05France
  3. 3.Institute of Experimental Botany, Academy of Sciences of Czech RepublicPragueCzech Republic
  4. 4.Department of Biochemistry and Microbiology, Institute of Chemical TechnologyPragueCzech Republic

Personalised recommendations