Plant Cell Reports

, Volume 31, Issue 8, pp 1415–1424 | Cite as

Novel promoters that induce specific transgene expression during the green to ripening stages of tomato fruit development

  • Kyoko Hiwasa-Tanase
  • Hirofumi Kuroda
  • Tadayoshi Hirai
  • Koh Aoki
  • Kenichi Takane
  • Hiroshi EzuraEmail author
Original Paper


Fruit-specific promoters have been used as genetic engineering tools for studies on molecular mechanism of fruit development and advance in fruit quality and additional value by increasing functional component. Especially fruit-ripening specific promoters have been well utilized and studied in tomato; however, few studies have reported the development of promoters that act at fruit developing stages such as immature green and mature green periods. In this study, we report novel promoters for gene expression during the green to ripening stages of tomato fruit development. Genes specifically expressed at tomato fruit were selected using microarray data. Subsequent to confirmation of the expression of the selected 12 genes, upstream DNA fragments of the genes LA22CD07, Les.3122.2.A1_a_at and LesAffx.6852.1.S1_at which specifically expressed at fruit were isolated from tomato genomic DNA as promoter regions. Isolated promoter regions were fused with the GUS gene and the resultant constructs were introduced into tomato by agrobacterium-mediated transformation for evaluation of promoter activity in tomato fruit. The two promoters of LA22CD07, and LesAffx.6852.1.S1_at showed strong activity in the fruit, weak activity in the flower and undetectable activity in other tissues. Unlike well-known fruit-ripening specific promoters, such as the E8 promoter, these promoters exhibited strong activity in green fruit in addition to red-ripening fruit, indicating that the promoters are suitable for transgene expression during green to ripening stages of tomato fruit development.

Key message Novel fruit-specific promoters have been identified and are suitable for transgene expression during green to ripening stages of tomato fruit development.


Fruit-specific promoter Tomato Green stage Red stage Fruit development 



Beta-d-glucuronidase gene



We thank the members of the Ezura laboratory for helpful discussions. Micro-Tom seeds (TOMJPF00001) were obtained from the National BioResource Project Tomato (NBRP-Tomato). This research was supported through grants from the “Development of Fundamental Technologies for the Production of High-Value Materials Using Transgenic Plants” project of the Ministry of Economy, Trade, and Industry of Japan to H.E. and K.T.


  1. Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965. doi: 10.1105/tpc.105.036053 PubMedCrossRefGoogle Scholar
  2. Aoki K, Yano K, Suzuki A, Kawamura S, Sakurai N, Suda K, Kurabayashi A, Suzuki T, Tsugane T, Watanabe M, Ooga K, Torii M, Narita T, Shin IT, Kohara Y, Yamamoto N, Takahashi H, Watanabe Y, Egusa M, Kodama M, Ichinose Y, Kikuchi M, Fukushima S, Okabe A, Arie T, Sato Y, Yazawa K, Satoh S, Omura T, Ezura H, Shibata D (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 11:210. doi: 10.1186/1471-2164-11-210 PubMedCrossRefGoogle Scholar
  3. Beaudoin N, Rothstein SJ (1997) Developmental regulation of two tomato lipoxygenase promoters in transgenic tobacco and tomato. Plant Mol Biol 33:835–846. doi: 10.1023/A:1005773722657 PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  5. Butelli E, Titta L, Giorgio M, Mock HP, Matros A, Peterek S, Schijlen EG, Hall RD, Bovy AG, Luo J, Martin C (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308. doi: 10.1038/nbt.1506 PubMedCrossRefGoogle Scholar
  6. Chen Y, Wang A, Zhao L, Shen G, Cui L, Tang K (2009) Expression of thymosin alpha1 concatemer in transgenic tomato (Solanum lycopersicum) fruits. Biotechnol Appl Biochem 52:303–312. doi: 10.1042/BA20080054 PubMedCrossRefGoogle Scholar
  7. Cordes S, Deikman J, Margossian LJ, Fischer RL (1989) Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato. Plant Cell 1:1025–1034. doi: 10.1105/tpc.1.10.1025 PubMedGoogle Scholar
  8. Coupe SA, Deikman J (1997) Characterization of a DNA-binding protein that interacts with 5′ flanking regions of two fruit-ripening genes. Plant J 11:1207–1218. doi: 10.1046/j.1365-313X.1997.11061207.x PubMedCrossRefGoogle Scholar
  9. Deikman J, Fischer RL (1988) Interaction of a DNA binding factor with the 5′-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J 7:3315–3320PubMedGoogle Scholar
  10. Deikman J, Kline R, Fischer RL (1992) Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lycopersicon esculentum). Plant Physiol 100:2013–2017. doi: 10.1104/pp.00.4.2013 PubMedCrossRefGoogle Scholar
  11. Deikman J, Xu R, Kneissl ML, Ciardi JA, Kim KN, Pelah D (1998) Separation of cis elements responsive to ethylene, fruit development, and ripening in the 5′-flanking region of the ripening-related E8 gene. Plant Mol Biol 37:1001–1011. doi: 10.1023/A:1006091928367 PubMedCrossRefGoogle Scholar
  12. Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G (2002) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 22:30–34. doi: 10.1016/S0014-5793(02)02699-6 CrossRefGoogle Scholar
  13. Estornell LH, Orzáez D, López-Peña L, Pineda B, Antón MT, Moreno V, Granell A (2009) A multisite gateway-based toolkit for targeted gene expression and hairpin RNA silencing in tomato fruits. Plant Biotechnol J 7:298–309. doi: 10.1111/j.1467-7652.2009.00402.x PubMedCrossRefGoogle Scholar
  14. Ferrie BJ, Beaudoin N, Burkhart W, Bowsher CG, Rothstein SJ (1994) The cloning of two tomato lipoxygenase genes and their differential expression during fruit ripening. Plant Physiol 106:109–118. doi: 10.1104/pp.106.1.109 PubMedCrossRefGoogle Scholar
  15. Gaffe J, Tiznado ME, Handa AK (1997) Characterization and functional expression of a ubiquitously expressed tomato pectin methylesterase. Plant Physiol 114:1547–1556. doi:10.1104/pp.114.4.1547 Google Scholar
  16. Hall LN, Bird CR, Picton S, Tucker GA, Seymour GB, Grierson D (1994) Molecular characterisation of cDNA clones representing pectinesterase isozymes from tomato. Plant Mol Biol 25:313–318. doi: 10.1007/BF00039542 PubMedCrossRefGoogle Scholar
  17. Hirai T, Fukukawa G, Kakuta H, Fukuda N, Ezura H (2010) Production of recombinant miraculin using transgenic tomato in a closed-cultivation system. J Agric Food Chem 58:6096–6101. doi: 10.1021/jf100414v PubMedCrossRefGoogle Scholar
  18. Hiwasa-Tanase K, Hirai T, Kato K, Duhita N, Ezura H (2012) From miracle fruit to transgenic tomato: mass production of the taste-modifying protein miraculin in transgenic plants. Plant Cell Rep 31:513–525. doi: 10.1007/s00299-011-1197-5 PubMedCrossRefGoogle Scholar
  19. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907PubMedGoogle Scholar
  20. Kausch KD, Handa AK (1995) Molecular cloning and nucleotide sequence of a lipoxygenase cDNA from ripening tomato fruit. Plant Physiol 107:669–670. doi: 10.1104/pp.107.2.669 PubMedCrossRefGoogle Scholar
  21. Kneissl ML, Deikman J (1996) The tomato E8 gene influences ethylene biosynthesis in fruit but not in flowers. Plant Physiol 112:537–547. doi: 10.1104/pp.112.2.537 PubMedGoogle Scholar
  22. Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An improved assay for β-glucuronidase (GUS) in transformed cells: methanol almost suppresses a putative endogenous GUS activity. Plant Sci 70:133–140. doi: 10.1016/0168-9452(90)90042-M CrossRefGoogle Scholar
  23. Le LQ, Lorenz Y, Scheurer S, Fötisch K, Enrique E, Bartra J, Biemelt S, Vieths S, Sonnewald U (2006) Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J 4:231–242. doi: 10.1111/j.1467-7652.2005.00175.x PubMedCrossRefGoogle Scholar
  24. Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH, Amar O, Lastochkin E, Larkov O, Ravid U, Hiatt W, Gepstein S, Pichersky E (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265. doi: 10.1104/pp.010293 PubMedCrossRefGoogle Scholar
  25. Lincoln JE, Cordes S, Read E, Fischer RL (1987) Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc Natl Acad Sci USA 84:2793–2797PubMedCrossRefGoogle Scholar
  26. Matsukura C, Aoki K, Fukuda N, Mizoguchi T, Asamizu E, Saito T, Shibata D, Ezura H (2008) Comprehensive resources for tomato functional genomics based on the miniature model tomato Micro-Tom. Curr Genomics 9:436–443. doi: 10.2174/138920208786241225 PubMedCrossRefGoogle Scholar
  27. Mollet B, Niederberger P, Pétiard V (2008) Novel tomato flavours introduced by plastidial terpenoid pathway engineering. Trends Biotechnol 26:4–6. doi: 10.1016/j.tibtech.2007.10.004 PubMedCrossRefGoogle Scholar
  28. Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL (1993a) Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA 90:5939–5943PubMedCrossRefGoogle Scholar
  29. Montgomery J, Pollard V, Deikman J, Fischer RL (1993b) Positive and negative regulatory regions control the spatial distribution of polygalacturonase transcription in tomato fruit pericarp. Plant Cell 5:1049–1062. doi: 10.1105/tpc.5.9.1049 PubMedGoogle Scholar
  30. Moon H, Callahan AM (2004) Developmental regulation of peach ACC oxidase promoter–GUS fusions in transgenic tomato fruits. J Exp Bot 55:1519–1528. doi: 10.1093/jxb/erh162 PubMedCrossRefGoogle Scholar
  31. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 10:4321–4325. doi: 10.1093/nar/8.19.4321 CrossRefGoogle Scholar
  32. Nicholass FJ, Smith CJ, Schuch W, Bird CR, Grierson D (1995) High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions. Plant Mol Biol 28:423–435. doi: 10.1007/BF00020391 PubMedCrossRefGoogle Scholar
  33. Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiol 140:3–11. doi: 10.1104/pp.105.068221 PubMedCrossRefGoogle Scholar
  34. Ozaki S, Ogata Y, Suda K, Kurabayashi A, Suzuki T, Yamamoto N, Iijima Y, Tsugane T, Fujii T, Konishi C, Inai S, Bunsupa S, Yamazaki M, Shibata D, Aoki K (2010) Coexpression analysis of tomato genes and experimental verification of coordinated expression of genes found in a functionally enriched coexpression module. DNA Res 17:105–116. doi: 10.1093/dnares/dsq002 PubMedCrossRefGoogle Scholar
  35. Pear JR, Sanders RA, Summerfelt KR, Martineau B, Hiatt WR (1993) Simultaneous inhibition of two tomato fruit cell wall hydrolases, pectinmethylesterase and polygalacturonase, with antisense gene constructs. Antisense Res Dev 3:181–190PubMedGoogle Scholar
  36. Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24:413–419. doi: 10.1104/pp.105.068221 PubMedCrossRefGoogle Scholar
  37. Schijlen E, Ric de Vos CH, Jonker H, van den Broeck H, Molthoff J, van Tunen A, Martens S, Bovy A (2006) Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol J 4:433–444. doi: 10.1111/j.1467-7652.2006.00192.x PubMedCrossRefGoogle Scholar
  38. Schijlen EG, de Vos CH, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530. doi: 10.1104/pp.107.100305 PubMedCrossRefGoogle Scholar
  39. Sun HJ, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431. doi: 10.1093/pcp/pci251 PubMedCrossRefGoogle Scholar
  40. Sun HJ, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnol J 5:768–777. doi: 10.1111/j.1467-7652.2007.00283.x PubMedCrossRefGoogle Scholar
  41. Wang S, Liu J, Feng Y, Niu X, Giovannoni J, Liu Y (2008) Altered plastid levels and potential for improved fruit nutrient content by downregulation of the tomato DDB1-interacting protein CUL4. Plant J 55:89–103. doi: 10.1111/j.1365-313X.2008.03489.x PubMedCrossRefGoogle Scholar
  42. Xu R, Goldman S, Coupe S, Deikman J (1996) Ethylene control of E4 transcription during tomato fruit ripening involves two cooperative cis elements. Plant Mol Biol 31:1117–1127. doi: 10.1007/BF00040829 PubMedCrossRefGoogle Scholar
  43. Yano K, Watanabe M, Yamamoto N, Tsugane T, Aoki K, Sakurai N, Shibata D (2006) MiBASE: a database of a miniature tomato cultivar Micro-Tom. Plant Biotechnol. 23:195–198. doi: 10.5511/plantbiotechnology.23.195 CrossRefGoogle Scholar
  44. Yano M, Hirai T, Kato K, Hiwasa-Tanase K, Fukuda N, Ezura H (2010) Tomato is a suitable material for producing recombinant miraculin protein in genetically stable manner. Plant Sci 178:469–473. doi: 10.1016/j.plantsci.2010.02.016 CrossRefGoogle Scholar
  45. Zhang H, Zhao L, Chen Y, Cui L, Ren W, Tang K (2007) Expression of human coagulation Factor IX in transgenic tomato (Lycopersicon esculentum). Biotechnol Appl Biochem 48:101–107. doi: 10.1042/BA20060224 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kyoko Hiwasa-Tanase
    • 1
  • Hirofumi Kuroda
    • 2
  • Tadayoshi Hirai
    • 1
  • Koh Aoki
    • 3
  • Kenichi Takane
    • 2
  • Hiroshi Ezura
    • 1
    Email author
  1. 1.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan
  2. 2.Inplanta Innovations Inc.KanagawaJapan
  3. 3.Graduate School of Life and Environmental SciencesOosaka Prefecture UniversitySakaiJapan

Personalised recommendations